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Abstract

accumulation, and fibrosis.

and as potential therapeutic targets.

Background: Pulmonary fibrosis (PF) is a progressive and lethal lung disease of elderly whose incidence has been
increasing following the Covid-19 pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-
CoV-2). PF immunopathogenesis involves progressive alveolar epithelial cell damage, release of damage-associated
molecular patterns (DAMPs), and extracellular matrix (ECM) injury. We assessed the dynamic role of LMW-
hyaluronan (LMW-HA) as DAMP in initiation of host immune TLR-2,4 responses and as determinant in progression
of ECM injury to fibrosis. Male Wistar rats were divided into Group | (saline control, n = 24) and Group |l
(intratracheal bleomycin, 7 U/kg/animal, n = 24). Animals were euthanized on 0, 7, 14, and 28 days. The time course
of release of LMW-HA, TLR-2,4 mRNA and protein levels, and NF-kB-p65 levels after bleomycin injury were
correlated with the development of parenchymal inflammation, remodelling, and fibrosis.

Results: Acute lung injury caused by bleomycin significantly increases the pro-inflammatory LMW-HA levels and
elevates TLR-24 levels on day 7. Subsequently, TLR-2 upregulation, TLR-4 downregulation, and NF-kB signalling
follow on days 14 and 28. This results in progressive tissue inflammation, alveolar and interstitial macrophage

Conclusions: LMW-HA significantly increases in PF caused by non-infectious and infectious (Covid-19) etiologies.
The accumulating HA fragments function as endogenous DAMPs and trigger inflammatory responses, through
differential TLR2 and TLR4 signalling, thus promoting inflammation and macrophage influx. LMW-HA are reflective
of the state of ongoing tissue inflammation and may be considered as a natural biosensor for fibrotic lung diseases
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Background

Pulmonary fibrosis is a progressive lung disease charac-
terized by aberrant tissue repair, excessive accumulation
of extracellular matrix (ECM), and scarring. It is a recog-
nized sequelae in genetically predisposed individuals
undergoing age-related fibroproliferative diseases. It
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arises from repetitive sub-lethal insults caused by oxida-
tive stress, radiation, chemotherapeutic agents, etc.
These varied etiologies show common underlying patho-
genesis, alveolar epithelial cell (AEC) injury, epithelial-
mesenchymal transition (EMT), and persistent ECM
production [1]. Abnormal hyperactive and dysregulated
innate immune mechanisms are initiated as a conse-
quence of release of inflammatory cytokines; IL-1f3, IL-6,
and TNF-a “cytokine storm” and result in (i) acute lung
epithelial injury, (ii) release of DAMPs such as low
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molecular weight-hyaluronan (LMW-HA), heat-shock
proteins, high mobility group box protein-1 (HMGB1),
etc., (iii) induction of HA synthase 2 (HAS2) in endothe-
lium, lung alveolar epithelial cells, and fibroblasts [2],
(iv) dysregulated release of matrix metalloproteinases
and ECM remodelling, (v) acute respiratory disease syn-
drome (ARDS), (vi) epithelial-mesenchymal transition,
and (vii) pulmonary fibrosis. The availability of only two
antifibrotic drugs till date has highlighted the need to
identify the potential clinical and laboratory biomarkers
that can predict the subgroup of patients that are going
to deteriorate or develop lung fibrosis.

The ongoing Covid-19 pandemic caused by severe
acute respiratory syndrome corona virus 2 (SARS-CoV-
2) has further increased the occurrence of pulmonary fi-
brosis since 2020. Diffuse alveolar damage (DAD) caused
by SARS-CoV-2 can progress to fibrosis even after virus
clearance [3]. Hyaluronan (HA), a highly hygroscopic
ECM molecule with the ability to absorb water up to
1000 times its molecular weight, is found in lung alveoli
in severe Covid-19 and can promote edema [4]. Since
the hyaluronan in cadaveric COVID-19 lung tissue com-
prises low molecular weight fragments [5], recent studies
have suggested estimation of serum and sputum levels
of HA at admission to distinguish critically ill patients
with Covid-19 infection [5, 6] as well as prove to be a
potential therapeutic target [7].

The ECM comprises of fibrous proteins, collagen and
elastin, residing in a milieu of glycoproteins, proteogly-
cans, glycosaminoglycans, growth factors, cytokines/che-
mokines, proteases, etc [8]. ECM contributes as an
active or passive player to diverse cellular processes; dif-
ferentiation, proliferation, adhesion, migration, and
apoptosis [9]. ECM disruption releases hyaluronidases
[10], reactive oxygen species [11], and degrades en-
dogenous HA into LMW-HA and HMW-HA fragments
[12, 13]. These HA fragments are recognized by cell sur-
face receptors; TLR-2,4, CD44, CD168, layilin, RHAMM
[14—18], on the basis of their size and correlate with na-
ture and extent of injury. The LMW-HA vary from a
few disaccharides up to over 700 kDa [19] and function
as pro-inflammatory DAMPs [20], while the high mo-
lecular weight HA (HMW-HA) (> 5000 kDa) signal the
resolution of inflammation and injury [14, 21]. There-
fore, the type of HA fragments (HMW/LMW) predom-
inating in the tissue after injury act as natural biosensors
for the state of tissue integrity [22]. The HA fragments
differentially trigger an inflammatory immune response
during acute lung infection, and chronic injury/repair
[23]. Elevated LMW-HA levels have been reported in
sputum of Covid-19 patients [5] and in bronchoalveolar
lavage (BAL) fluid of asthma, sarcoidosis, ARDS [24], al-
veolar proteinosis, IPF patients [25]. BALF elevation of
HA is associated with local lung injury while raised
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levels of HA in blood are indicative of both local lung
injury and sequential organ failure. Thus, suggesting the
potential utility of HA estimation in identifying local and
systemic organ dysfunction in acute respiratory distress
syndrome (ARDS) patients [24].

The present study focuses on the pathogenetic path-
way of progression of lung tissue inflammation to fibro-
sis after release of LMW-HA. Elevated LMW-HA
release pro-inflammatory cytokines, IL-1B,6, TNF-a [26,
27], and chemokines and facilitates leukocyte access to
the injury site.This results in cell proliferation [28], mi-
gration [29], dendritic cell activation [17], and sterile in-
flammation [30]. During stage of chronic inflammation,
LMW-HA transcribes matrix metalloproteinases (MMP-
1,3,9,10,13), collagen, and cytokines, TGF-f, IL-12, and
IGF-I [30-32], resulting in attenuation or progression of
ECM remodelling. Further, the LMW-HA fragments act
as endogenous ligands for Toll-like receptor (TLR-2 and
TLR-4) leading to lung inflammation and injury [14].
LMW-HAs engage TLR-2 and activate the macrophage
inflammatory response [28]. On the other hand, LMW-
HAs engage TLR-4 and protect type-II AECs against
oxidant-mediated injury. TLR-4 induction maintains ap-
propriate anti-apoptotic response [33] leading to AEC
self-renewal and limiting the extent of fibrosis [34]. The
ECM participates in progressive fibrotic scarring of lung
by (i) activating a profibrotic feedback loop [35], (ii) ab-
normal ECM cross-linking resulting in enhanced fibro-
blast growth and preventing normal ECM turnover in
IPF [36]. However, the specific ECM-HA-induced TLR
signalling resulting in progression of fibrosis continues
to remain an enigma [37].

We propose that the differential host immune re-
sponse to ECM injury and LMW-HA fragments is the
critical determinant of epithelial injury/repair pro-
cesses outcome after both infectious and non-
infectious injurious stimuli. These generate feedback
signals, leading to either (i) alveolar macrophage
priming, increased TLR-2/4 ratio, basal nuclear
factor-kappa B (NF-kB) activation, inflammation, and
progression of parenchymal fibrosis, or (ii) reducing
oxidative stress, decreased TLR-2/4 ratio, type-1II AEC
protection, and renewal and repair of lung injury. We
elaborate the differential activation of TLRs-2,4 and
macrophage influx during bleomycin-induced paren-
chymal remodelling.

Methods

Chemicals

Bleomycin sulfate (Bleocip, Cipla), ketamine hydrochlor-
ide, xylocaine, anti-goat-IgG (SAB3700288, Sigma Life
Science), TLR-2 (Sc-10739, Santa Cruz, USA), TLR-4
(Sc-16240, Santa Cruz), CD-68 (ab125212, Abcam), NF-
KB-p65 (Sc-109, Santa Cruz), ExtrAvidin® Peroxidase
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(Extra-2,3, Sigma), NovaRED (SK-4800, Vector labs,
USA), Meyer’s hematoxylin, TRIzol® (Invitrogen
15596018), chloroform, isopropanol, MMLV (M0253S,
NEB), RNase (M0314, NEB), dNTPs (N0447S, NEB),
random primers (S1330S, NEB), SYBR Green (S4438,
Sigma), protease inhibitor (Sigma), hyaluronan quanti-
kine ELISA (LMW-HA < 35-950kDa, DHYALO, R&D
Systems, USA), and Lamin-A/C (612162, BD Biosci-
ences, India) were used.

Animals

Male Wistar rats (150-250 g, n = 48) were obtained from
the animal house, V.P.Chest Institute. The experimental
protocol was approved by institutional animal ethical
committee and written consent for use of animals was ob-
tained from IAEC. The animals were divided into two
groups, group I: saline control, group II: bleomycin. Both
the groups contained 6 animals on each day 0, 7, 14, and
28. Animals were provided with standard rodent diet and
water ad libitum. Animal care was as per guidelines laid
down by Indian National Science Academy, New Delhi.
The experiments were performed in the Animal house of
the V.P. Chest Institute. No randomization method and
strategy control potential confounders were used.

Induction of lung fibrosis

Animals were anesthetized with ketamine hydrochloride
(50 mg/kg-b.w, I.M) and local anesthesia with 1% ligno-
caine. The skin was incised under aseptic precautions
and trachea was exposed. In control animals, 100 pul of
0.9% normal saline was instilled intratracheally. Experi-
mental animals received single intratracheal instillation
of bleomycin (7 units/kg-bw) in 100 pl saline, as previ-
ously described [38]. After instillation, incision was su-
tured and betadine and antibiotic ointment was applied.
Animals were euthanized 0, 7, 14, and 28 days after
intratracheal bleomycin administration, by using over-
dose of ketamine hydrochloride. The lungs were ligated
at the trachea and removed en bloc. The lungs were
immersed in 10% neutral buffered formalin for fixation
and processed through a graded series of alcohols and
xylene prior to paraffin embedding. Five-micrometer
sections of the lungs were deparaffinized and stained
with hematoxylin and eosin stain. The time course of re-
lease of LMW-HA fragments, TLR-2,4 mRNA and pro-
tein, NF-kB-p65, macrophage influx, and CD68
expression after bleomycin injury were correlated with
development of parenchymal inflammation and fibro-
sis.There were no exclusions in analysis of control and
experimental groups.

LMW-HA
LMW:-hyaluronan levels (<35-950kDa) were quanti-
tated by using the quantitative sandwich enzyme
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immunoassay technique (Hyaluronan Quantikine ELISA
Kit DHYALO, R&D systems). Lung tissue (500 mg) was
homogenized in lysis buffer (0.5% TritonX-100, 150
mMNaCl, 15mM Tris, 1 mM CaCl,, 1 mM MgCl, pH
7.40) and centrifuged at 12,000g (4°C, 20 min). Fifty-
milliliter aliquots of supernatant sample were pipetted
into the pre-coated wells. After binding and washing
steps, 100 uL of enzyme-linked polyclonal antibodies
specific for LMW-hyaluronan was added to the wells.
The plates were incubated for 2 h at 37 °C. The unbound
antibody-enzyme reagent was removed by washing and a
chromogen substrate solution was added. The plates
were incubated at room temperature for 30 min. The re-
action was terminated with 100 ul of diluted hydro-
chloric acid solution per well and read at 450 nm in an
ELISA reader.

Gene expression

Total RNA was extracted from lung using guanidinium
thiocyanate-phenol-chloroform extractionand reverse-
transcribed to cDNA. cDNA was amplified: PCR activa-
tion (95°C, 5 min); 35cycles of denaturation @ 95 °C
(305s), annealing @ 60 °C (35 s), extension @ 72 °C (30
s); final extension @ 72°C (7 min). Quantitative real-
time PCR was performed using Mastercycler, Eppendorf,
and primers: TLR-2: Forward-Primer-ATGGCAGCTC
CAGGTCTTTC, Reverse-Primer-TTCCGCTGGACTCC
AATGTC, TLR-4: Forward-Primer-TCAAGCCCAA
GCCTTTCAGG, Reverse-Primer-TTCTCCCAAGATC
AACCGATGG, p-actin: Forward-Primer-GACCTTCA
ACACCCCAGCCA, Reverse-Primer-GTCACGCACG
ATTTCCCTCTC. Relative gene expression was calcu-
lated, using AACt method.

TLR protein

Immunohistochemistry was performed on lung sections
which were deparaffinized and rehydrated through
graded alcohols. Endogenous peroxidase was quenched
by treatment with 0.3% hydrogen peroxide in methanol
for 3min. Sections were incubated with the primary
antibodies—TLR-2, TLR-4, CD68. The bound antigen
was then visualized with the avidin-biotinylated peroxid-
ase technique using DAB substrate. Sections were coun-
terstained with Harris’ hematoxylin, dehydrated, cleared
in xylene, and mounted with DPX. Immunostaining was
quantified using a Nikon-90i microscope and NIS-Ar
image analysis software as per previously described
method [39]. Briefly, 10 fields (x 40) were randomly se-
lected and chromogen-positive cells measured. The in-
tensity of positively stained cells was subtracted from
250 (maximum intensity of RGB image) to obtain recip-
rocal intensity which is directly proportional to protein
expression.



Pandey et al. The Egyptian Journal of Bronchology (2021) 15:27

NF-kB-p65

NE-kB-p65 was assessed in lung tissue nuclear extracts
by Western blot as per previously described method
[40]. Then, 200 mg tissue was homogenized in buffer-A
(150 mM NaCl, 0.5 mM PMSF, 1mM EDTA, 10 mM
HEPES, 0.6% NP-40). The nuclear pellet was resus-
pended in solution-B (25% glycerol, 20 mM HEPES, 420
mM NaCl, 1.2mM MgCl, 02mM EDTA, 0.5mM
PMSEF, 0.5 mM DTT). Total nuclear proteins were quan-
tified using Bradford assay [41]. Proteins were resolved
on 12% SDS-PAGE and transferred onto PVDF mem-
branes. Membranes were blocked with 5% skimmed milk
in TBST buffer and incubated with 10 ul of primary anti-
bodies (1:1000), NF-kB-p65, and laminin-A/C (1:1000)
for 2h at room temperature. Membrane was washed
thrice with TBST and then incubated with biotinylated
secondary antibody (1:2000) of goat anti-Rabbit IgG
for 2h. Following washing, membrane was incubated
with extravidin (1:5000) for 2h and visualized using
NovaRED in Gel documentation system (Bio-Rad).
Membrane was then blocked again with 5% skimmed
milk in TBST at 4°C overnight and re-probed with
housekeeping protein (Lamin-A/C, 612162, BD Biosci-
ences, India). Densitometry was performed using
Image lab software-2.0, and values were normalized
to Lamin-A/C.

Statistics

Statistical analysis was done by GraphPad prism-5.0,
using one-way ANOVA with Newman Keule’s post hoc
test and expressed as Mean + SEM (standard error of
mean). P value < 0.05 was considered significant.

Results

Bleomycin-induced LMW-HA

Bleomycin-induced lung injury is characterized by HA
fragmentation that act as endogenous ligands for TLRs
[17]. Other endogenous ligands of TLRs include fibrino-
gen [42], surfactant protein-A [43], extradomain-A of
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fibronectin [44], heparan sulfate [45], and HMGB-1 [46].
These ligands induce innate and adaptive immune re-
sponse through induction of costimulatory molecules in
antigen-presenting cells [47] and propagate parenchymal
inflammation [48

The present study shows significant increase in levels
of LMW-HA fragments in lung tissue on day 7 (322 +
14.0 pg/mL), after bleomycin as compared to control
(162.2 + 3.79 pg/mL) (Fig. 1). LMW-HA increased per-
sistently up to day 14 (264 + 16.65pg/mL) and de-
creased in fibrotic phase (day 28, 128 + 13.15 pg/mL).
This is similar to previous study by Teder et al. in mouse
model, who observed massive accumulation of HA (5.4
x 10° MW), on day 7, in alveolar spaces and intersti-
tium, following bleomycin, as compared to control (14.4
x 10° MW). They reported that a vast majority of HA
fragments are cleared from the lung within 14 days after
injury and impaired clearance is followed by collagen de-
position and fibrosis [49]. LMW-HA clearance occurs
after their internalization [50] by receptors such as
TLR2, TLR4, and CD4 [51, 52]. Persisting HA has pro-
inflammatory effects and perpetuates tissue inflamma-
tion and injury [53]. In a recent autopsy study, hyaluro-
nan staining confirmed prominent HA exudates in
alveolar spaces of Covid-19 lungs, suggesting its role in
ARDS caused by SARS-CoV-2 [7].

Bleomycin-induced lung inflammation

Bleomycin causes oxidative damage to AECs DNA, lead-
ing to an initial neutrophil influx, followed by infiltration
of lymphocytes and macrophages from day 3 onwards
[54]. In the present study, we demonstrated chronic
interstitial inflammation comprising of lymphocytes and
macrophages on days 7 and 14 after bleomycin (Fig. 2d,
e) as compared to control (Fig. 2a, b). This was associ-
ated with increase in LMW-HA (Fig. 1). This is similar
to previous studies, where LMW-HA expression coin-
cides with recruitment of circulating monocytes [55] and
early macrophage accumulation at site of lung injury
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Fig. 1 Hyaluronan fragments in lung tissue before and after bleomycin instillation. Significant increase in levels of HA fragments levels on day 7
that persist on day 14 and reduce to baseline levels on day 28. “p < 0.0001 group Il B and group Il C vs. group Il A and group |
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[56]. These CD68-positive macrophages localize to peri-
vascular sites of injury on day 7 after bleomycin [57] and
undergo proliferation, M1/M2 polarization, and release
profibrotic cytokines like TGF-B1. TGF-B1 activates fi-
broblasts, causing EMT and ascending grade of paren-
chymal fibrosis [58]. In the present study, the
parenchymal remodelling on day 28 was characterized
by reduced cellularity with persistence of macrophages
(Fig. 2f) even after LMW-HA levels declined (Fig. 1).
LMW-HA and TLR-2,4-induced macrophage macro-
phage influx and accumulation [14] is suggested to be
key component in progression of lung fibrosis [59].
However, LMW-HAs can also stimulate macrophages
independently of CD44 and TLR-4 via the TLR-2/

MyD88 pathway [19] leading to IRAK, TRAF6, and NF-
KB activation [28]. These accumulating macrophages
and their associated hyperactive and dysregulated innate
immune response need to be explored as biomarkers of
disease activity and progression [38]. The innate and
adaptive immune imbalance results in unbridled produc-
tion of pro-inflammatory cytokines and chemokines and
contributes to “cytokine storm” and severity of Covid-19
patients [60, 61].

Bleomycin-induced TLR-2 response

During inflammation, HA fragments differentially en-
gage TLRs, based on their size. HA fragments bind to
TLR-2 on alveolar macrophages, trigger NF-xB
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activation, provide a supportive environment for the im-
mune cells, and promote inflammation [62]. On the one
hand, the TLR-NF-«xB pathway is central in promoting
infection-induced lung injury while on the other hand,
increased uptake of HA by macrophages can help in re-
ducing inflammation and promoting repair; therefore,
the exact role of TLRs, as a friend or foe in pathogenesis
of lung fibrosis, remains to be elaborated [63].

In present study, significant increase in TLR-2 mRNA
(Fig. 3g, fold change (FC)-3.8, “p < 0.001) and protein
expression (Fig. 3c) was seen in AECs, perivascular in-
flammatory cells, and macrophages, on day 7, after bleo-
mycin, as compared to control (Fig. 3a). On day 14,
TLR-2 mRNA levels remained elevated (Fig. 3g, FC-4.8,
“p < 0.0001) and correlated with its enhanced protein
expression in all above cell types (Fig. 3d). The signifi-
cantly increased TLR-2 mRNA levels on days 7 and 14
correlated with elevated LMW-HA levels on these days
(Fig. 1). Upregulated TLR-2 mediates production of
TGEF-P1 and interleukins, IL-6,12,23 [9, 64], and initiates
the Th2-lymphocyte response [65]. From the resulting
chemokine production, M2 macrophage polarization
leads to cellular phase of bleomycin-induced pneumon-
itis [66]. On day 28, TLR-2 mRNA levels decreased as
compared to control (Fig. 3g, FC-1.65); however, TLR-2
protein expression persisted in AECs and macrophages
(Fig. 3e,f) and was associated with persistent M2 macro-
phage polarization and progression of tissue fibrosis
[67]. HA-TLR2 binding activates NF-kB, MAPKs, p38,
and JNK pathways and releases pro-inflammatory and
profibrotic cytokines such as interleukin-1, MIP-1,
PDGF, and TGF-f1 [68]. Previously, our group has dem-
onstrated an increased expression of TGF-B1 in type-II
AECs, EMT cells, alveolar macrophages, and interstitial
fibroblasts from day 7 up to day 35 after bleomycin [69].
Thus, LMW-HA-TLR-2 interactions are not only critical
as pro-inflammatory signalling cascade but are also asso-
ciated with increased TGF-B1 expression [69]. Blocking
this pathway may attenuate lung inflammation and fi-
brosis by altering the pulmonary immune microenviron-
ment [70].

Bleomycin-induced TLR-4 response

LMW-HA are mainly TLR-4 dependent [15] and upreg-
ulate CD68 expression in macrophages in a TLR-4-
dependent manner similar to bacterial lipopolysacchar-
ide [71] and interferon-y [72]. The activated macro-
phages use HA as a substrate to aid in migration
towards site of injury, and HA binding helps in retaining
the activated cells at the sites of inflammation. The
SARS-CoV-2 spike protein strongly interacts with the
Toll-like receptor 4 (TLR4) pathway producing pro-
inflammatory cytokines such as interleukin-6 (IL-6) and
tumor necrosis factor-alpha (TNF-a) culminating in
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cytokine storm and multiple organ failure [73]. TLR-4
deficiency increases the inflammatory response elicited
by LMW-HA [74] resulting in elevated cytokine and
chemokine levels [71], which skew towards a Th2/Thl
response and increased fibrosis.

In the present study, increased TLR-4 mRNA (Fig. 4g,
FC-9.4, “p < 0.001) and protein expression was seen in
AECs, BECs, and macrophages (Fig. 4c) on day 7, after
bleomycin as compared to control (Fig. 4a, f). On day
14, TLR-4 mRNA levels decreased (Fig. 4g, FC-2.29, p =
ns), while TLR-4 protein expression persisted in AECs,
BECs, and macrophages (Fig. 4d) up to day 28 (Fig. 4e).
TLR-4 mRNA downregulation correlated with the pro-
gression of fibrosis (Fig. 4g, e). TLR-4 protects against
oxidant-mediated lung injury by maintaining anti-
apoptotic responses [75], promoting alveolar stem cell
renewal [33] and epithelial self-defense mechanisms
through TLR-4-dependent basal activation of NF-«xB
[34]. Studies in bleomycin challenged TLR-4 knockout
mice have found them to develop stronger inflammatory
response [71] with significantly lower type-I collagen
mRNA levels as compared to WT mice [76]. The basal
TLR-4 activity is critical for resolution of acute and
chronic inflammation in pulmonary fibrosis [77]. Our
group has previously demonstrated reduction of
caveolin-1 levels in bleomycin-instilled lungs [78]. Thus,
the TLR-4 mRNA downregulation and accompanying
caveolin deficiency [78] contribute to progression to fi-
brosis during lung injury [79].

Bleomycin induced NF-kB signalling

NF-kB activation is induced by HA fragments [80] and
TLR-2,4 activation and results in downstream stimula-
tion of TNF-a, TGF-B, and IFN-y [81]. In the present
study, a significant increase of NF-kB-p65 levels were
observed from day 7 onwards up to day 28 after bleo-
mycin as compared to control (Fig. 5a, b). This is similar
to a previous study which found maximal nuclear trans-
location of NF-kB-p65 on day 7 after bleomycin instilla-
tion [82]. NF-«kB-p65 upregulation correlated with
perivascular lymphocytes and interstitial macrophage in-
filtration, in the cellular phase. These alveolar macro-
phages function as the “first responders,” resulting in the
production of cytokines that then activate NF-kB in
other cell types [83]. After nuclear translocation, the
NF-«kB transcriptionally regulates (i) TGF-B1 resulting in
fibroblast proliferation [84], (ii) matrix metalloprotein-
ases (MMPs) [85] and their inhibitors, tissue Inhibitor of
Matrix ~ Metalloproteinases(TIMPs),  resulting  in
protease-antiprotease imbalance, ECM deposition, and
matrix remodelling. In the previous study by our group,
we have demonstrated that it is the shift in the balance
of MMP-9/TIMP-1,3 ratio to less than 1 that primes the
inflammatory response and its progression to fibrosis
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Fig. 3 Toll-like receptor-2 (TLR-2) mRNA and protein expression in lungs before and after bleomycin instillation: As compared to saline control
and bleomycin day 0 (a, b), on day 7 and 14 after bleomycin instillation, an increased TLR-2 expression is seen in AECs, perivascular inflammatory
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persisted in AECs, alveolar and interstitial macrophages of lung parenchyma. f Quantification of the intensity of TLR-2 protein expression in the
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Fig. 4 Toll like receptor-4 (TLR-4) mRNA and protein expression in lungs before and after bleomycin instillation. As compared to saline control
and bleomycin day 0 (a, b), on day 7 and 14 after bleomycin instillation, an increased TLR-4 expression is seen in AECs, bronchiolar epithelial cells,
and alveolar and interstitial macrophages, on day 7 and on day 14 after bleomycin instillation (c, d respectively). e On day 28, TLR-4 protein
expression persists in AECs, bronchiolar epithelial cells, and alveolar and interstitial macrophages. f Quantification of the intensity of TLR-4 protein
expression in the lung parenchyma. Significant increase in TLR-4 expression was seen from day 7 onwards that persisted up to day 28. "p <
0.0001 group II' B, group Il C and group II D vs. group Il A and group I. g TLR-4 mRNA levels were upregulated on day 7 and returned to baseline
on day 14 and day 28. "p < 0.001 group Il B vs. group Il A; **"p < 0.0001 group Il B vs. group Il D and group |
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Fig. 5 a NF-kB p65/Lamin-A/C expression before and after bleomycin treatment. An upregulation of NF-kB p65 expression is seen on day 7 after
bleomycin instillation that persists up to day 14 and further increases on day 28, compared to control. b Densitometric analysis of the NF-kB p65
and Lamin-A/C (74 kDa and 65 kDa respectively) protein bands shows significant upregulation of NF-kB p65 protein expression from day 7
onwards up to day 28. p < 0001 group Il C, D vs. group I; "p < 0.05 group Il B vs group |

[86]. Thereby suggesting that NF-kB induced by LMW-
HA fragments and TLR-2,4 promotes fibrosis by orches-
trating local inflammatory reactions and altering
protease-antiprotease balance maintaining the fibrotic
responses [87].

Discussion

The pathogenesis of bleomycin-induced pneumonitis is
associated with multiple mechanisms, including oxida-
tive damage, protease-antiprotease imbalance [38], cave-
olin deficiency [78], TGF-f1 [69], and genetic
susceptibility [88]. Initially, the ECM was considered to
be a simple scaffold providing structural support to lung
airways. However, recently, the ECM components have

been observed to be a major determinant of cell behav-
ior, fate, and function [37].

In the present study, we elaborate on the dynamic
role of ECM and LMW-HA fragments in regulating
the epithelial injury/repair processes. In the early
phase, LMW-HA alerts the immune system of a
breach in tissue integrity [23] and activates TLR-2,4,
alveolar macrophages, and NF-kB signalling, resulting
in inflammation. TLR-4 mRNA subsequently downre-
gulates and shifts the TLR-2/TLR-4 balance to more
than 1. This predisposes to the progression of inflam-
mation to fibrosis [14, 80, 89] and results in a pro-
gressive increase in lung hydroxyproline levels [86].
Thus, the ECM-driven LMW-HA-TLR-2,4-NF-xB
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pathway defines the extent of cellular macrophage in-
filtration and parenchymal matrix remodelling. They
are reflective of the state of tissue integrity and may
serve as biomarker of active fibrosis in chronic lung
diseases and as potential therapeutic targets.

In 2020, efforts have been made to understand the
pathophysiology of the novel coronavirus patients who
are predisposed to develop chronic lung disease follow-
ing COVID-19. These patients have lung inflammation
with activation of NF-kappa B (NF-«B) transcription fac-
tor, in lung macrophages [90], release of inflammatory
cytokines (IL-1f3,6, TNF-a), induction of HA synthase 2
in lung AEC, endothelium and fibroblasts, accumulation
of prominent hyaluronan exudates in the alveolar spaces,
and progression to acute respiratory distress syndrome,
[7]. High molecular weight HA predominates in most
tissues under healthy conditions, whereas fragmented
low molecular weight HA polymers predominate at sites
of active inflammation [91], thereby suggesting that ad-
juvant treatment targeting hyaluronan, such as intranasal
administration of exogenous hyaluronidase or HA in-
hibitor (4-methylumbelliferone (4-MU) [60] may be a
promising approach to reduce mortality in critically ill
covid-19 patients [7]. Similarly, the immunomodulation
of NF-«B activation and inhibitions of NF-«kB (IkB) deg-
radation may result in a reduction of the cytokine storm
and have been suggested as a potential therapeutic target
for severe COVID-19 [90].

The strong binding of the SARS-COV-2 spike protein
with Toll-like receptors-1,4,6 and especially with TLR-4
causes an intense exacerbation of the host immune re-
sponse with release of interleukin-6 (IL-6) and tumor
necrosis factor-alpha (TNF-a), and enhanced severity of
COVID-19 pathology [73]. The TLRs are pattern recog-
nition receptors which recognize pathogen-associated
molecular patterns (PAMPs) as well as endogenous
DAMPs such as hyaluronan and trigger the innate im-
mune response [92]. TLR-4 activation kills the microbes
but can cause DAMP associated host tissue damage as
has been previously reported [93, 94]. Tissue damage is
initiated by the myeloid differentiating primary re-
sponse gene 88 (MyD88)-dependent or the MyD88-
independent pathways [95] leading to macrophage,
natural killer cell, mast cell recruitment and their
release of several interleukins, interferons, reactive
oxygenspecies (ROS), and reactive nitrogen species
(RNS) [96]. Moreover, the TLR4-NF-kB pathway is
central towards promoting infection-induced lung
injury in aging patients with comorbidities such as
diabetes, atherosclerosis, obesity, and hypertension,
thus suggesting the utility of therapeutic targeting
of TLR-4 pathway by compounds such as statins,
ACE inhibitors, opioids, and steroids in COVID-19
[73].

Page 10 of 13

Conclusions

The lung parenchymal hyaluronan fragments and TLR2/
TLR4 balance form the critical link between AEC apop-
tosis [14], activation of innate immune response, and de-
velopment of cytokine storm, inflammation, and lung
fibrosis in both infectious and non-infectious lung injury.
The LMW-HA-TLR-2,4-NF-kB pathway should be ex-
plored as a biomarker and for its therapeutic potential,
in controlling the severity of lung inflammation and its
progression to lung fibrosis.
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