RESEARCH

The Egyptian Journal of Bronchology

Open Access

The diagnostic role of C2PAC index in cases of sepsis-induced coagulopathy (SIC)

Mohamed Shaaban Mousa^{1*}, Salwa Hassan Ahmed², Fatma Abdel Wahab Abdel Maksoud³, Soliman Belal Soliman⁴ and Ahmed A. Tantawy¹

Abstract

Background To study the potential role of the C2PAC index (a ratio of soluble type C lectin-like receptor 2 level sCLEC-2 and platelet count) in sepsis-induced coagulopathy with the possibility of using this index as an early predictor in sepsis and sepsis-induced coagulopathy.

Methods Our case–control study included a total of 86 participants divided into 2 groups: group I is the case group consisting of 56 patients of sepsis or septic shock and group II (control group) of 30 healthy persons: sex and age-matched healthy individuals. All patients were subjected to assessment of C lectin domain family 2 receptor (sCLEC2), by enzyme-linked immunosorbent assay ELIZA kit, then C2PAC index (a ratio of soluble type C lectin-like receptor 2 level sCLEC-2 and platelet count) was calculated using the platelet count.

Results Our study demonstrated that sCLEC-2 levels and C2PAC in group I were higher than in group II (*p* value < 0.001), and Klebsiella was the most common organism detected in ICU septic patients; detected in 25 patients (44.6%), there is a statistical significance (*p* value 0.045) between sCLEC2 levels and streptococcal infections. It was detected also that the SIC group was 17 patients (30.4%) and the sepsis without coagulopathy group was 39 patients (69.6%). Compared with the sepsis without coagulopathy group, the SIC group was significantly older and had a significantly higher SOFA score, sCLEC-2 levels, and C2PAC index. Lastly, the strong potentiality of using C2PAC as a diagnostic and prognostic marker for sepsis-induced coagulopathy with high statistical significance < 0. 001.

Conclusions C2PAC index can be validated as an accurate marker of sepsis-induced coagulopathy with higher sensitivity when using the C2PAC index (82.4%) than using sCLEC-2 (58.8%) and both have the same specificity (89.7%). The C2PAC index is a useful predictor of SIC progression.

Keywords Clectin, Coagulopathy, C2PAC index, DIC, sCLEC-2, SIC

*Correspondence:

Mohamed Shaaban Mousa

- Mohamed_shaaban190@yahoo.com
- ¹ Department of Pulmonary Medicine, Faculty of Medicine, Cairo
- University, Cairo, Egypt
- ² Department of Internal Medicine and Clinical Hematology, Faculty

of Medicine, Cairo University, Cairo, Egypt ³ Department of Clinical and Chemical Pathology, Faculty of Medicine,

- Cairo University, Cairo, Egypt
- 4 Demonstration of Critical Care M
- ⁴ Department of Critical Care Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt

Introduction

Sepsis is potentiated by a dysregulated and abnormal reaction of the host to infection, leading to multiple organ damage with a high possibility of irreversible disabilities or maybe death. During sepsis, tissue injury results from the associated unlimited activation and interaction of the complement, coagulation, and inflammatory mediators as well as platelet dysfunction [1].

Platelets are the maestro in sepsis cascade by their dual responses (hemostasis and immune), what is called a "thrombosis-related signature and occurs as a

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

result of the interaction of neutrophils, monocytes, and dendritic cells, with the consequence of fibrin deposition and platelet activation and finally thrombosis [2].

The literature review detected a phenomenon named "immuno-thrombosis." This has been hypothesized that under certain circumstances, thrombosis is a defensive process of innate immunity in which platelets play a vital role. Therefore, to correlate the severity of sepsis, it may be crucial to detect the status of platelet activation rather than monitoring the changes in the platelet count [3]. Soluble C-type lectin-like receptor 2 (sCLEC-2) also known as CLEC1B has been investigated as a biomarker of thrombotic events and it is expressed on platelets' membranes [4]. Recent research demonstrated the elevation of sCLEC-2 in acute coronary syndrome, acute ischemic stroke, and acute brain infarction [5–8].

Disseminated intravascular coagulation (DIC) is a condition of persistent activation of coagulation with subsequent depletion of platelets and coagulation factors [9]. The incidence of coagulopathy in sepsis is around 30% [10]; hence, there is a term called sepsis-induced coagulopathy (SIC) [11]. sCLEC-2 was observed as a platelet activator marker and to be elevated in thrombotic events and in SIC [2].

The philosophy of using the C2PAC index is that it may be more reliable and accurate than calculating sCLEC-2 levels alone which will be affected by decreased platelet counts in many conditions like sepsis and DIC [2].

We hypothesized that the C2PAC index is an important predictor that might reflect early progression to SIC as it reflects the phase of platelets activation before the reduction of platelet count and development of coagulopathy so we conducted this case–control study to evaluate the role of the C2PAC index (a ratio of soluble type C lectinlike receptor 2 level sCLEC-2 and platelet count) in sepsis-induced coagulopathy (SIC).

Patients and methods

The current study included a total of 86 participants divided into 2 groups. This case–control study was divided into two groups.

Group I: 56 patients (presented with sepsis or septic shock).

Group II: 30 control groups of healthy volunteers matched for age and sex.

Study location

This case–control study was carried out in intensive care units of pulmonology, critical care, and internal medicine departments of Kasr Al Ainy University Hospital.

Inclusion criteria

- 1. Adult patients with age more than 18 years.
- 2. Both sexes (male and female).
- 3. Diagnosed with sepsis by sepsis-3 criteria, 2016 [12], and updated by sepsis guidelines protocol, 2021, regarding changes of some definitions and criteria for sepsis such as weak recommendation for using serum lactate and delayed capillary refill time and strong recommendation against using quick SOFA score [13], so in our study, we did not depend on serum lactate and capillary refill time and we used SOFA score instead of quick SOFA.

Diagnosis of sepsis can be established after the presence of infection, which can be proven or suspected, and 2 or more of the following criteria:

- Hypotension (systolic blood pressure < 90 mm Hg or fallen by > 40 from baseline, mean arterial pressure < 70 mm Hg).
- Fever > 38.3 °C.
- Hypothermia < 36 °C.
- Tachycardia (HR > 90/min).
- Tachypnea.
- Altered mental status.
- White blood cell count > 12,000 or less than 4000, or with > 10% "bands" (immature forms).
- Arterial hypoxemia ($paO_2/FiO_2 < 300$).
- Acute drop in urine output (<0.5 ml/kg/h for at least 2 h despite fluid resuscitation or about 35 ml/h for a 70 kg person).
- Creatinine increase > 0.5 mg/dL.
- INR > 1.5 or aPTT > 60 s.
- Thrombocytopenia (platelet count < 100,000).
- High bilirubin (total bilirubin > 4 mg/dL).

Septic shock is severe sepsis with sepsis-induced hypotension [systolic blood pressure < 90 mm Hg (or a drop of > 40 mm Hg from baseline) or mean arterial pressure < 70 mm Hg] that persists after adequate fluid resuscitation.

Exclusion criteria

- 1. Post-cardiopulmonary arrest, liver cirrhosis (Child– Pugh grade C or above), chronic hemodialysis, pregnancy, and continuing antibiotic use for a course started before admission.
- 2. Patients who lacked any of the biomarkers of coagulation and inflammation.

Methodology in details

This is a case–control study. Patients who met the abovementioned criteria and agreed to take part in the study were requested to sign an informed consent prior to conducting the study. After an informed consent had been signed by all patients, the following parameters were collected:

- 1. Demographic data: age, gender, and occupation.
- 2. History and physical examination parameters: history of chronic diseases and history of present illness
- 3. Laboratory investigations:
- Routine labs for sepsis and coagulopathy screening

Platelet count, WBCs, PT, PC, INR, PTT, D-dimer level, FDPs, CRP, ABG, liver, and kidney functions.

- Calculation of P/F ratio from ABG (PaO₂/FIO₂).
- Calculation of SOFA score
- · Cultures according to localizing symptoms
- Specific test: plasma CLEC-2 (C-type lectin-like receptor 2) also named CLEC1B as a synonym will be measured using enzyme-linked immunosorbent assay (ELISA) according to the manufacturer (Bioassay Technology Laboratory, Zhejiang, China), using STAT-FAX Eliza reader, results are converted to pg/ ml.
- Calculation of the ratio between soluble type C lectin-like receptor 2 (sCLEC-2) levels and platelet counts for all participants to identify the C2PAC index.

Furthermore, written informed consent was obtained from all participants clarifying the purpose of the study conforming to the Helsinki Declarations (1964).

Our study had been approved by the committee of ethics of the Faculty of Medicine before we started under IRB number: N-37–2022.

Sample size

According to previous literature, the anticipated mean of the C2PAC index in controls is 87.2 (\pm 38.9), while in cases is 286 (\pm 205). By using the G*Power sample size calculator at 0.01 alpha errors, with and power of 0.99, the effect size will be 1.35, and the minimum sample in each group is 29 [2].

Statistical analysis

Data were coded and interpreted by the statistical package for the Social Sciences (SPSS) version 28 (IBM Corp., Armonk, NY, USA). Data was summarized using mean, standard deviation, median, and minimum and maximum in quantitative data and using frequency (count) and relative frequency (percentage) for categorical data. Comparisons between quantitative variables were done using the non-parametric Mann–Whitney test [14]. For comparing categorical data, chi-square (χ^2) test was performed. Fisher's exact test was used instead when the expected frequency is less than 5 [15]. Correlations between quantitative variables were done using the Spearman correlation coefficient [16]. ROC curve was constructed with the area under curve analysis performed to detect the best cutoff value of PLT, C lectin level, and C lectin/plt ratio for detection of SIC. *P* values less than 0.05 were considered as statistically significant.

Results

Our study included a total of (86) participants classified into 2 groups; Group I of 56 patients diagnosed with sepsis or septic shock and group II of 30 age- and sex-matched healthy individuals. As regards group I, it consisted of 31 males (55.4%) and 25 females (44.6%). Twenty-five cases (44.6%) were diabetic, and 27 cases (48.2%) were hypertensive. Smoking history was observed in 15 cases (26.8%). In the current study, pneumonia in 31 patients (55.4%) was the commonest diagnosis followed by urinary tract infection (UTI) in 16 patients (28.6%). Klebsiella 25 patients (44.6%) was the commonest organism detected in this study. In our study, patients who were diagnosed with sepsis were 40 (71.4%) while those who were diagnosed with septic shock were 16 (28.6%). All the descriptive data is illustrated in Table 1.

The age of sepsis patients ranged from 18 to 89 years with a mean of 59.6 ± 16.2 . It was detected that platelet counts were 188.93 ± 128.36 , sCLEC-2 level was 607.41 ± 457.37 , and C2PAC index was 6.06 ± 7.06 . All clinical and laboratory data of group I was illustrated in Table 2.

In the current study, a comparison between group I and group II showed that the sCLEC-2 level and C2PAC index were statistically significant (p value < 0.001) higher in group I (sepsis patients) as shown in Table 3.

In our study, we correlated *C* lectin level (sCLEC-2) with clinical data including comorbidities, and it showed a statistical significance of *C* lectin level value as regards altered mental status, septic shock, patients on vasopressors, patients with positive FDPs, and in streptococcal infections with *p* values < 0.001, 0.002, 0.006, 0.001, and 0.045, respectively; however, no statistical changes in relation with other cultures, different comorbidities, and various diagnoses as shown in Table 4.

Our research correlated C lectin/platelet ratio (C2PAC index) with clinical data and showed the highly statistical significance of the C2PAC index with p value < 0.001 in correlation to patients with altered mental status, septic shock, on vasopressors, and positive FDPs; however,

Table 1 Descriptive data of cases group (group I)

		Cases	
		Count	%
Sex	М	31	55.4%
	F	25	44.6%
Smoking history	Yes	15	26.8%
	No	41	73.2%
DM	Yes	25	44.6%
	No	31	55.4%
HTN	Yes	27	48.2%
	No	29	51.8%
Cardiac diseases	Yes	22	39.3%
	No	34	60.7%
Renal impairment	Yes	13	23.2%
	No	43	76.8%
Cancer	Yes	3	5.4%
	No	53	94.6%
Cerebrovascular acci-	Yes	7	12.5%
dents	No	49	87.5%
Mental state	Conscious	39	69.6%
	Altered	17	30.4%
Sepsis versus septic	Sepsis	40	71.4%
shock	sentic shock	16	28.6%
Vasopressor	Yes	17	30.4%
Vusopiessoi	No	30	69.6%
FDPs	Positive	15	26.8%
	Negative	/1	73.2%
Site of infection	Wound infection LITI	1	1 90%
Site of Infection	Wound infection	7	12.5%
		5	9 Q0%
		10	17.00%
	Duerneral consis	1	1 80%
	Pneumonia, wound infection	3	5.4%
	Pneumonia	23	41.1%
	Infective endocarditis	2	3.6%
	Empyema	4	7.1%
Pneumonia	Yes	31	55.4%
	No	25	44.6%
UTI	Yes	16	28.6%
•	No	40	71.4%
Wound	Yes	12	21.4%
	No	44	78.6%
Endocarditis	Yes	2	3.6%
	No	54	96.4%
Fmovema	Ves	4	71%
Lingycina	No	50	07 00%
Klebsiella	Voc	J∠ 25	∍∠.9% ΛΛ 60/-
Nebsiena	No	20 31	55 / 0/4
Preudomonar	Voc	12	22.470
i seudomonas	No		ZJ.Z70
	INO	43	/0.8%

_

Page 4 of 14

Tab	le 1 ((continued)
IUN		(continucu)

		Cases	
		Count	%
Acinetobacter	Yes	11	19.6%
	No	45	80.4%
MRSA	Yes	6	10.7%
	No	50	89.3%
E. coli	Yes	10	17.9%
	No	46	82.1%
Strept	Yes	5	8.9%
	No	51	91.1%
No growth	Yes	3	5.4%
	No	53	94.6%
SIC likely or not likely	Yes	17	30.4%
	No	39	69.6%

there was no statistical significance between C2PAC and streptococcal infections, different comorbidities, cultures, and various diagnoses as shown in Table 5.

In the current study, the correlation coefficient of platelet counts, sCLEC2 levels, and C2PAC index in relation to MAP, D dimer, and SOFA score showed the following: MAP was positively correlated to platelet counts r0.450 and p value 0.001, however negatively correlated to CLEC-2 levels and C2PAC index r (-0.286, -0.444) with p value (0.45, 0.001), respectively. D dimer was negatively correlated to platelet count r - 0.373, p value 0.005, while positively correlated to CLEC-2 levels and C2PAC index r (0.406, 0.496) p value (0.002, < 0.001), respectively. SOFA score was negatively correlated to platelet count r - 0.553, p value < 0.001, while positively correlated to CLEC-2 levels and C2PAC index r (0.392, 0.589) p value (0.003, < 0.001), respectively, as shown in Table 6. There was a positive correlation between the C2PAC index and SOFA score as shown in Fig. 1.

Comparison between sepsis-induced coagulopathy and sepsis without coagulopathy presented that there was a statistical significance difference regarding SBP (pvalue > 0.001) being lower in SIC, DBP (p value > 0.001) being lower in SIC, HR (p value 0.033) being higher in SIC, and MAP (p value > 0.001) being lower in SIC. It revealed also statistical significance in APTT, INR, and D dimer (p value > 0.001) being higher in SIC, PLT count, PC, and P/F ratio (p value > 0.001) being lower in SIC. Also, ALT, AST, T.bil, D.bil, sCLEC2 level, and C2PAC index and SOFA score showed a statistical significance difference being higher in SIC as shown in Table 7.

sCLEC-2 level and C2PAC index can be used for diagnosis of sepsis-induced coagulopathy with higher sensitivity when using the C2PAC index (82.4%) than using

	Cases							
	Mean	Standard deviation	Median	Minimum	Maximum			
Age	59.66	16.22	62.00	17.00	89.00			
Sepsis onset (day)	5.14	2.18	5.00	1.00	10.00			
SBP	108.30	19.19	110.00	80.00	160.00			
DBP	68.04	13.81	70.00	50.00	100.00			
HR (heartbeats/minute)	101.66	19.79	102.50	30.00	150.00			
RR (respiratory rate/minute)	25.21	5.13	25	14.00	38.00			
Temp (°C)	37.57	0.704	37.5	36.2	39.50			
UOP (mL/24 h)	1881.43	865.17	1800.00	350.00	4200.00			
MAP	81.01	15.58	81.65	60.00	120.00			
PTT (s), <i>N</i> (35–45)	44.64	6.01	43.00	38.00	58.00			
INR	1.47	0.38	1.40	1.00	2.50			
D dimer (ug/mL)	1.86	2.96	0.65	0.30	16.00			
TLC (x 10 ³ /uL)	14.30	7.66	12.25	2.10	37.20			
Hb (g/dL)	9.20	1.62	8.65	6.30	13.20			
PLT (× 10 ³ /uL)	188.93	128.36	155.00	22.00	651.00			
CRP (mg/L)	168.73	112.47	130.00	39.00	589.00			
PC (%)	63.75	13.41	65.00	27.00	85.00			
ALT (U/L)	73.55	146.73	40.50	3.00	1069.00			
AST (U/L)	77.13	110.06	56.00	7.00	765.00			
Bilirubin T (mg/dL)	1.28	1.41	0.90	0.20	8.30			
Bilirubin D (mg/dL)	0.54	0.81	0.30	0.08	4.70			
Creatinine (mg/dL)	1.92	1.228	1.5	0.40	5.5			
Urea (mg/dL)	85.70	66.51	63.50	21.00	400.00			
P/F ratio	285.11	122.29	283.00	72.00	547.00			
SOFA score	6.43	4.28	5.00	2.00	17.00			
C lectin level (pg/ml)	607.41	457.37	433.80	36.70	2277.00			
C lectin/plt ratio	6.06	7.06	2.60	0.10	29.06			

Table 2 Clinical and laboratory data of sepsis patients (group I)

Table 3 Comparison between cases and control	ol group:	S
--	-----------	---

	Cases				Control				P value		
	Mean	SD	Median	Minimum	Maximum	Mean	SD	Median	Minimum	Maximum	
TLC (x 10 ³ /uL)	14.30	7.66	12.25	2.10	37.20	6.90	2.32	6.83	3.94	14.26	< 0.001
Hb (g/dL)	9.20	1.62	8.65	6.30	13.20	12.98	1.81	12.60	9.30	18.50	< 0.001
PLT (x 10 ³ /uL)	188.93	128.36	155.00	22.00	651.00	278.37	84.50	263.50	150.00	452.00	< 0.001
sCLEC-2 level (pg/ml)	607.41	457.37	433.80	36.70	2277.00	261.61	481.67	81.05	1.00	1883.00	< 0.001
C2PAC index	6.06	7.06	2.60	0.10	29.06	1.06	2.00	0.33	0.00	8.54	< 0.001

sCLEC-2 (58.8%) and both have the same specificity (89.7%) as shown in Table 8.

ROC curve analysis for both sensitivity and specificity of both C lectin level, C lectin/Plt ratio (C2PAC index), and platelets count revealed the following: for C lectin level, at cutoff < 845, the area under the curve (AUC) was 0.765 with 58% sensitivity and 89.7% specificity (p value > 0.001), for C lectin/Plt ratio at cutoff < 5.02, the area under the curve (AUC) was 0.938, with 82.4% sensitivity and 89.7% specificity (p value > 0.001), while for platelets count > 135, the area under the curve (AUC) was 0.956, and 94% sensitivity and 87.2% specificity (p value > 0.001) as shown in Figs. 2 and 3.

Table 4 Correlation between sCLEC-2 level in relation to comorbidities, diagnoses, and organisms in cultures

		sCLEC-2 le	evel				P value
		Mean	SD	Median	Minimum	Maximum	
Sex	М	594.78	392.24	468.30	36.70	1883.00	0.458
	F	623.08	535.36	419.20	45.90	2277.00	
Smoking history	Yes	673.22	488.93	500.00	200.00	1883.00	0.395
	No	583.34	449.16	419.20	36.70	2277.00	
DM	Yes	581.30	497.98	396.60	53.30	2277.00	0.299
	No	628.47	429.06	500.00	36.70	1883.00	
HTN	Yes	664.62	512.90	468.30	53.30	2277.00	0.342
	No	554.15	400.66	412.00	36.70	1883.00	
Cardiac diseases	Yes	669.88	545.61	431.90	45.90	2277.00	0.700
	No	566.99	393.59	447.05	36.70	1883.00	
Renal impairment	Yes	508.94	377.57	380.70	53.30	1600.00	0.443
	No	637.19	478.84	468.30	36.70	2277.00	
Cancer	Yes	500.60	442.59	525.90	45.90	930.00	1
	No	613.46	461.54	423.00	36.70	2277.00	
Cerebrovascular accidents	Yes	491.54	240.85	412.00	342.30	1028.00	0.716
	No	623.97	479.79	463.20	36.70	2277.00	
Mental state	Conscious	470.74	388.80	394.90	36.70	2277.00	< 0.001
	Altered	920.95	458.34	930.00	376.70	1883.00	
Sepsis versus septic shock	Sepsis	494.61	396.31	395.75	36.70	2277.00	0.002
	Septic shock	889.42	489.78	910.00	328.80	1883.00	
Vasopressor	Yes	856.27	493.53	890.00	325.90	1883.00	0.006
Tusopiesso:	No	498 94	400 54	396.60	36.70	2277.00	
FDPs	Positive	985.50	571.84	930.00	328.80	2277.00	0.001
	Negative	469.09	316.17	404 50	36.70	1600.00	
Pneumonia	Yes	590.15	348.60	468 30	53 30	1600.00	0.415
	No	628.82	571 50	419.20	36.70	2277.00	0.115
UTI	Yes	608.80	545.02	421.10	53 30	2277.00	0 793
•	No	606.86	425.15	453.90	36.70	1883.00	0.750
Wound	Yes	586.55	394.89	453.90	36.70	1500.00	0.873
Toula	No	613.10	476.99	421.10	45.90	2277.00	0.07.5
Endocarditis	Yes	688 30	486.07	688 30	344.60	1032.00	0.878
	No	604.42	460.83	433.80	36.70	2277.00	0.070
Empyema	Yes	657.23	838.65	350.00	45.90	1883.00	0.612
Linpycina	No	603 58	428.96	433.80	36.70	2277.00	0.012
Klehsiella	Yes	602.24	419.86	468 30	45.90	1883.00	0.735
hebbena	No	611 59	492.38	412.00	36.70	2277.00	0.755
Pseudomonas	Yes	556.75	317.02	444.60	375 70	1500.00	0.473
r seudomonus	No	622.73	494.15	423.00	36.70	2277.00	0.175
Acinetobacter	Ves	630.62	300.52	177.90	320.30	1600.00	0.536
Achietobacter	No	601.74	476.08	412.00	36.70	2277.00	0.550
MRSA	Ves	583.07	371 38	635.35	53.30	930.00	1
MINGA	No	610.34	J/ 1.50 //60 73	433.80	36.70	2277.00	I
E coli	Ves	670.74	636.62	39.00	305.00	2277.00	0 702
L. COII	No	502 71	J16 56	A53 00	36.70	1883.00	0.700
Strent	Voc	202.00	17/ 65	342 20	JU.70 15 QA	500.00	0.045
Jucht	No	620 71	174.0J AG5 G2	J+2.JU	36.70	2277 00	0.040
No growth	Noc	100.24	403.03	403.20 206.60	26.70	1022.00	0 < 0 0
No growth	ies No	400.43	203.90	390.00	50.7U	1052.00	U.ÖÖU
	NO	014.15	428.93	444.0U	43.90	ZZ//.UU	

 Table 5
 Correlation between C2PAC index in relation to comorbidities, diagnoses, and organisms in cultures

		C2PAC index					
		Mean	SD	Median	Minimum	Maximum	
Sex	м	5.91	6.91	2.60	0.10	29.06	0.967
	F	6.24	7.38	2.55	0.21	27.14	
Smoking history	Yes	8.58	8.60	3.33	1.10	29.06	0.071
	No	5.14	6.28	2.53	0.10	27.14	
DM	Yes	4.80	5.55	2.53	0.24	21.43	0.504
	No	7.08	8.02	3.06	0.10	29.06	
HTN	Yes	5.76	6.14	2.55	0.25	21.43	0.980
	No	6.34	7.92	2.60	0.10	29.06	
Cardiac	Yes	8.46	9.12	3.28	0.21	29.06	0.119
	No	4.51	4.88	2.39	0.10	20.92	
Renal impairment	Yes	6.16	8.42	2.59	0.25	29.06	0.634
•	No	6.03	6.71	2.60	0.10	27.14	
Cancer	Yes	14.49	14.43	14.21	0.21	29.06	0.486
	No	5.58	6.36	2.59	0.10	27.14	
Cerebrovascular accidents	Yes	3.37	2.78	2.34	0.57	7.34	0.496
	No	6.45	7.41	2.60	0.10	29.06	
Mental state	Conscious	3 50	3.97	2.00	0.10	15.81	< 0.001
include state	Altered	11.93	9.03	11.87	1 13	29.06	0.001
Sensis versus sentic shock	Sensis	3 13	3.46	215	0.10	15.81	< 0.001
Sepsis reisus septie shoek	Septic shock	13 38	8.47	12.13	1 13	29.06	0.001
Vasopressor	Voc	12.50	0. 1 / 9.71	12.03	1.15	20.06	< 0.001
vasopressor	No	3 18	3.40	2.05	0.10	15.81	< 0.001
EDDe	Positive	14.60	7.85	1/ 05	3.20	20.06	< 0.001
T DF 3	Nogativo	2.04	2.11	2.02	0.10	29.00	< 0.001
Proumonia	Voc	2.94 5.46	5.05	2.02	0.10	14.21	0 2 7 0
Fileumonia	No	5.40	0.20	J.27	0.23	27.14	0.376
1171	No	0.00 E 41	0.30 E 70	1.00	0.10	29.00	0662
011	tes	5.41	J./Z	2.52	0.24	10.56	0.005
Maximal I	NO	0.32	7.58	3.17	0.10	29.06	0.026
wound	res	7.58	9.51	2.81	0.10	29.00	0.936
F 1 155	NO	5.65	0.31	2.60	0.21	27.14	0.404
Endocarditis	res	7.89	7.55	7.89	2.55	13.23	0.494
F	NO	5.99	/.11	2.60	0.10	29.06	0.610
Етруета	res	6.39	9.78	2.22	0.21	20.92	0.612
	NO	6.04	6.94	2.60	0.10	29.06	0.050
Kiebsiellä	res	6.09	6.98	3.33	0.21	27.14	0.352
Decodemons	NO	6.04	7.24	2.02	0.10	29.06	0.577
Pseudomonas	res	6.4/	8.63	3.27	1.13	29.06	0.567
	NO	5.94	6.63	2.55	0.10	27.14	0.000
Acinetobacter	Yes	4.04	4.04	2.44	0.73	12.03	0.628
	No	6.55	/.5/	3.06	0.10	29.06	0 7 4 7
MRSA	Yes	/.//	11.13	2.81	0.24	29.06	0./4/
	No	5.86	6.55	2.60	0.10	27.14	
E. coli	Yes	6.65	6.08	3.20	0.57	15.81	0.358
	No	5.93	7.31	2.49	0.10	29.06	
Strept	Yes	1.67	1.20	1.39	0.21	3.33	0.091
	No	6.49	7.25	3.06	0.10	29.06	
No growth	Yes	5.12	7.09	2.02	0.10	13.23	0.580
	No	6.11	7.12	2.60	0.21	29.06	

Table 6 Correlation of platelet counts, sCLEC2 level, and C2PAC index in relation to clinical data, laboratory investigations, and SOFA score

		PLT	sCLEC-2 level	C2PAC index
Age	Correlation coefficient	0.082	-0.054	-0.061
	P value	0.550	0.693	0.657
	Ν	56	56	56
Sepsis onset (day)	Correlation coefficient	0.002	-0.018	-0.036
	<i>P</i> value	0.988	0.897	0.791
	Ν	56	56	56
Systolic blood pressure (SBP)	Correlation coefficient	0.484	-0.311	-0.483
	<i>P</i> value	< 0.001	0.020	< 0.001
	N	56	56	56
Diastolic blood pressure (DBP)	Correlation coefficient	0.403	-0.224	-0.391
	P value	0.002	0.097	0.003
	N	56	56	56
Heart rate (HP)	Correlation coefficient	_0.204	0.470	0354
near rate (nit)	Byoluo	0.121	< 0.001	0.007
	r value	0.151	< 0.001 E4	0.007
		0047	20	20
Respiratory rate (RR)		0.047	0.051	-0.060
	P value	0.731	0.710	0.662
_	N	56	56	56
Temperature	Correlation coefficient	-0.100	-0.013	0.081
	<i>P</i> value	0.464	0.923	0.553
	N	56	56	56
Urine output	Correlation coefficient	0.384	-0.134	-0.357
	<i>P</i> value	0.003	0.325	0.007
	Ν	56	56	56
Mean arterial pressure (MAP)	Correlation coefficient	0.450	-0.268	-0.444
	P value	0.001	0.045	0.001
	Ν	56	56	56
PTT, N (35–45)	Correlation coefficient	-0.483	0.318	0.507
	P value	< 0.001	0.017	< 0.001
	Ν	56	56	56
INR	Correlation coefficient	-0.432	0.270	0.432
	P value	0.001	0.044	0.001
	Ν	56	56	56
D-dimer	Correlation coefficient	-0.373	0.406	0.469
	<i>P</i> value	0.005	0.002	< 0.001
	Ν	56	56	56
TLC	Correlation coefficient	0.236	-0.175	- 0.255
	<i>P</i> value	0.080	0.196	0.058
	N	56	56	56
Hb	Correlation coefficient	0131	-0.010	-0.067
	P value	0.335	0.944	0.622
	N	56	56	56
CPR	Correlation coefficient	_0.052	0.104	0.100
cm	P value	0.052	0.10-	0.100
	r value N	0.705	0. 444 56	0.404
PC	iv Correlation coefficient	0201	0.200	00
ru		0.321	- 0.209	-0.332
	<i>P</i> value	0.016	0.122	0.012
	N	56	56	56

Table 6 (continued)

		PLT	sCLEC-2 level	C2PAC index
ALT	Correlation coefficient	-0.201	0.158	0.221
	<i>P</i> value	0.138	0.244	0.102
	Ν	56	56	56
AST	Correlation coefficient	-0.115	0.108	0.162
	<i>P</i> value	0.398	0.428	0.233
	Ν	56	56	56
Bilirubin T	Correlation coefficient	-0.071	0.001	0.030
	<i>P</i> value	0.601	0.994	0.827
	Ν	56	56	56
Bilirubin D	Correlation coefficient	-0.211	0.038	0.138
	<i>P</i> value	0.118	0.779	0.312
	Ν	56	56	56
Creatinine	Correlation coefficient	-0.057	-0.151	0.010
	<i>P</i> value	0.678	0.266	0.945
	Ν	56	56	56
Urea	Correlation coefficient	-0.049	-0.081	0.006
	<i>P</i> value	0.719	0.554	0.965
	Ν	56	56	56
P/F ratio	Correlation coefficient	0.298	-0.325	-0.358
	<i>P</i> value	0.026	0.015	0.007
	Ν	56	56	56
SOFA score	Correlation coefficient	-0.553	0.392	0.589
	<i>P</i> value	< 0.001	0.003	< 0.001
	Ν	56	56	56

Discussion

Sepsis and septic shock are fatal conditions that must be diagnosed early without delay for early administration of the proper antimicrobial agents [13].

The present study included a total of (86) divided into 2 groups; group I: 56 patients diagnosed with sepsis

	Sepsis induced coagulopathy ($N = 17$ patients)					Sepsis without coagulopathy ($N = 39$ patients)				P value	
	Mean	SD	Median	Minimum	Maximum	Mean	SD	Median	Minimum	Maximum	
Age	59.00	18.08	65.00	17.00	80.00	59.95	15.59	60.00	20.00	89.00	0.844
Sepsis onset (day)	5.12	2.03	5.00	1.00	10.00	5.15	2.27	5.00	1.00	10.00	0.921
SBP	94.71	18.75	90.00	80.00	150.00	114.23	16.32	110.00	80.00	160.00	< 0.001
DBP	57.65	12.00	50.00	50.00	90.00	72.56	12.08	70.00	50.00	100.00	< 0.001
HR	106.71	19.22	110.00	50.00	130.00	99.46	19.87	98.00	30.00	150.00	0.033
RR	33.71	24.28	24.00	14.00	99.00	26.67	14.05	25.00	3.00	105.00	0.655
Temperature	37.25	2.62	37.80	27.50	39.50	37.49	0.63	37.20	36.50	39.00	0.145
Urine output	1597.06	848.06	1400.00	350.00	2800.00	2005.38	853.59	2100.00	600.00	4200.00	0.097
МАР	68.61	14.38	63.30	60.00	110.00	86.42	12.86	83.30	60.00	120.00	< 0.001
aPTT, N (35–45)	51.12	5.89	53.00	40.00	58.00	41.82	3.28	40.00	38.00	50.00	< 0.001
INR	1.89	0.32	1.80	1.50	2.50	1.29	0.23	1.30	1.00	2.00	< 0.001
D-dimer	4.56	4.20	4.00	0.30	16.00	0.68	0.74	0.50	0.30	5.00	< 0.001
TLC	14.96	6.64	14.30	7.00	30.00	14.01	8.12	11.90	2.10	37.20	0.407
Hb	8.94	1.55	8.60	6.30	12.20	9.31	1.65	8.70	7.10	13.20	0.438
PLT	82.65	39.12	83.00	22.00	144.00	235.26	126.29	210.00	37.00	651.00	< 0.001
CRP	174.95	124.19	130.00	69.20	589.00	166.01	108.59	137.00	39.00	540.00	0.708
PC	50.76	9.91	53.00	27.00	65.00	69.41	10.52	70.00	35.00	85.00	< 0.001
ALT	148.88	251.71	87.00	3.00	1069.00	40.72	28.93	35.00	6.00	122.00	0.006
AST	132.18	181.00	81.00	13.00	765.00	53.13	42.34	48.00	7.00	243.00	0.023
Bilirubin T	2.14	2.15	1.20	0.30	8.30	0.91	0.69	0.70	0.20	3.80	0.010
Bilirubin D	1.01	1.22	0.50	0.09	4.70	0.34	0.44	0.24	0.08	2.70	0.001
Creatinine	2.18	1.31	2.10	0.80	5.29	2.15	1.93	1.50	0.40	9.50	0.427
Urea	91.24	56.48	65.00	21.00	191.00	83.28	70.99	54.00	21.00	400.00	0.273
P/F ratio	238.71	110.96	250.00	82.00	423.00	305.33	122.79	300.00	72.00	547.00	0.039
SOFA score	10.47	4.43	10.00	3.00	17.00	4.67	2.78	4.00	2.00	15.00	< 0.001
sCLEC-2 level	958.76	592.33	930.00	328.80	2277.00	454.26	275.20	404.50	36.70	1300.00	0.002
C2PAC index	13.71	7.95	13.23	2.55	29.06	2.73	2.83	1.85	0.10	14.21	< 0.001

Table 7 Comparison between sepsis-induced coagulopathy and sepsis without coagulopathy as regards vital signs and laboratory investigations

Table 8 Sensitivity and specificity of C lectin level, C lectin/plt ratio, and platelets in sepsis-induced coagulopathy

	Area under the curve	<i>P</i> value	Asymptotic 95% confidence interval				
			Lower bound	Upper bound	Cutoff	Sensitivity %	Specificity %
C lectin level (sCLEC-2)	0.765	< 0.001	0.623	0.907	>845	58.8	89.7
C lectin/plt ratio (C2PAC index)	0.938	< 0.001	0.878	0.998	> 5.02	82.4	89.7
PLT	0.956	< 0.001	0.906	1.006	< 135.5	94.1	87.2

or septic shock and group II: 30 age and sex-matched healthy individuals. In the current study, males diagnosed with sepsis were more than females, 31 males (55.4%) and 25 females (44.6%).

Several studies have reported sex-based differences in sepsis and septic shock patients, and all these studies show a higher risk of sepsis in men which may be due to male sex hormones (androgens), as they were shown to be suppressive on cell-mediated immune responses. In contrast, female sex hormones exhibited protective effects [17].

There is a statistical significance (p value 0.045) between sCLEC2 level and streptococcal infections. This may be explained by the innate immune system

Fig. 2 ROC curve in correlation to C lectin level and C lectin/Plt ratio (C2PAC index)

employs C-type lectin receptors (CLRs) to recognize carbohydrate structures on pathogens and self-antigens. The macrophage-inducible C-type lectin (Mincle) is a FcR γ -coupled CLR that was shown to bind to mycobacterial cord factor. Several studies detected that Mincle can recognize *S. pneumonia* but is not required for the anti-pneumococcal innate immune response [18].

In the current study, the C2PAC index showed a statistically significant difference (p value < 0.001) between group I (6.06 ± 7.06) and group II (1.06 ± 2.00) being lower in group II (healthy volunteers). Hiroyasu Ishikura also obtained the same results that The C2PAC index is significantly lower in the healthy volunteers than in septic patients [2].

Platelets play a pivotal role in sepsis starting with coagulation activation at the infection site and thrombus formation and this is recognized as an immune-thrombosis mechanism. When these reactions spread to the whole body, depletion of platelets occurs followed by DIC [19, 20].

Platelet count showed a statistically significant difference (p value < 0.001) between group I (188 ± 128) and group II (278 ± 84) being lower in group I (septic patients). sCLEC-2 level showed a statistically significant difference (p value < 0.001) between group I (607 ± 457) and group II (261 ± 481) being higher in group I (septic patients).

Hiroyasu Ishikura detected the same results that the septic patients had a significantly lower platelet count and significantly higher sCLEC-2 level on ICU admission compared with the healthy volunteers (P < 0.01) [2].

Regarding the comparison between sepsis-induced coagulopathy (SIC) and sepsis without coagulopathy in the current study, the C2PAC index and platelets showed a statistically significant difference (p value < 0.001). The C2PAC index is higher in SIC, but platelets are lower in SIC. sCLEC-2 level was significantly higher in SIC than sepsis without coagulopathy (p value < 0.002) but not as high as the C2PAC index and platelets; however, Hiroyasu Ishikura detected that the sCLEC-2 level did not significantly differ between the two groups [2].

In this study, it was detected that the SIC group was 17 patients (30.4%) and the sepsis without coagulopathy group was 39 patients (69.6%). Compared with the non-SIC group, the SIC group was significantly older and had a significantly higher SOFA score, C lectin levels, and C2PAC index. This proposed that The C2PAC index is a useful predictor of SIC progression and diagnosis in septic patients.

Fig. 3 ROC curve in correlation to platelets' count

Hiroyasu Ishikura obtained different results regarding the number of patients diagnosed with SIC in a study conducted on 70 patients in which the non-SIC group and SIC group were 26 and 44 patients, respectively. However, they obtained the same results regarding the comparison between SIC and non-SIC, compared with the non-SID group, the SID group was significantly older and had a significantly higher SOFA score [2].

In the current study, it was detected that the C2PAC index at cutoff < 5.02, the area under the curve (AUC) was 0.938 with 82.4% sensitivity and 89.7% specificity (p value > 0.001). Our results had a higher C2PAC index cutoff compared to Ishikura et al. that concluded the C2PAC index at cutoff 1.4 was possible to diagnose SIC with (AUC 0.805, sensitivity of 75.0% and specificity of 76.9%) on a study conducted on 70 Japanese septic patients [2]. The difference in the C2PAC index cutoff between these two studies could be explained by the different ethnicities. The second explanation could be due to more reduction in the platelets count in the SIC group in our study

 (82.65 ± 39.12) compared to Ishikura et al. study in which the platelet count in the SIC group was 134 ± 87 which may reflect higher C2PAC index in the current study.

Also, the difference in the C2PAC index may be explained by the difference in sepsis severity guided by SOFA score; however, this was not detected between these two studies in which the SOFA score in the current study was 10.47 ± 4.43 , while in Ishikura et al.'s study, it was (10.1 ± 3.7) [2].

The current study proposed that C2PAC was more accurate and impressive than using platelets' counts alone with higher specificity (89.7% versus 87.2%, respectively). C2PAC index was more sensitive than sCLEC-2 levels (82.4% versus 58%, respectively) in the detection of SIC, and this matched with the same results of Ishikura et al. [2].

Limitation to this study

Our study is a single-center experience on small numbers of patients with only one reading of sCLEC-2 level in each patient due to funding limitations. We need multiple centers of research with multiple readings of sCLEC-2 levels for each patient during the progress of either sepsis or sepsis-induced coagulopathy to detect also the prognostic value and validity to be used as an early predictor test. Some limitations of the present study should be noted. It was a small single-center observational study, making it difficult to generalize the findings globally.

Conclusion

This study concluded that sCLEC-2 and C2PAC index (a ratio of sCLEC-2 levels and platelet count) could be used as diagnostic markers of sepsis. However, it is more precise to use the C2PAC index and could be validated as a predictor of sepsis-induced coagulopathy with both high sensitivity and specificity (82.4%, 89.7%, respectively) rather than using sCLEC-2 alone (sensitivity 58.8%).

Abbreviations

ABG	Arterial blood gases
ALT	Alanine transaminase
AST	Aspartate aminotransferase
AUC	Area under the curve
C2PAC	A ratio of soluble type C lectin-like receptor 2 (sCLEC-2) level
	and platelet count
CRP	C-reactive protein
D.Bil	Direct bilirubin
DBP	Diastolic blood pressure
DM	Diabetes mellitus
DIC	Disseminated intravascular coagulation
ELISA	Enzyme-linked immunosorbent assay
FDPs	Fibrinogen degradation products
Hb	Hemoglobin
HR	Heart rate
HTN	Hypertension
INR	International normalized ratio
MAP	Mean arterial pressure
PC	Prothrombin concentration
P/F ratio	The ratio between the partial pressure of oxygen in ABG to the
	fraction of inspired oxygen
Pg	Pico gram
PLT	Platelets
PT	Prothrombin time
PTT	Partial thromboplastin time
SBP	Systolic blood pressure
sCLEC-2	Soluble type C lectin-like receptor 2
SIC	Sepsis-induced coagulopathy
ROC analysis	Receiver-operating characteristic analysis
SOFA score	Sequential organ failure assessment score
RR	Respiratory rate
T. Bil	Total bilirubin
TLC	Total leucocytic count
UOP	Urine output
UTI	Urinary tract infection

Acknowledgements

Not applicable.

Authors' contributions

All authors shared in the collection of data, analysis of results, and writing the manuscript.

Funding

No.

Availability of data and materials

With the corresponding author upon request.

Declarations

Ethics approval and consent to participate

Ethical approval was obtained before starting research under number N-37–2022.

Consent for publication

Not applicable as neither personal images nor personal data of the participants were included in the manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 1 September 2023 Accepted: 12 October 2023 Published online: 18 October 2023

References

- Assinger A, Schrottmaier WC, Salzmann M, Rayes J (2019) Platelets in sepsis: an update on experimental models and clinical data. Front Immunol 10:1687
- Ishikura H, Irie Y, Kawamura M, Hoshino K, Nakamura Y, Mizunuma M et al (2022) Early recognition of sepsis-induced coagulopathy using the C2PAC index: a ratio of soluble type C lectin-like receptor 2 (sCLEC-2) level and platelet count. Platelets 33(6):935–944
- Vardon-Bounes F, Ruiz S, Gratacap MP, Garcia C, Payrastre B, Minville V (2019) Platelets are critical key players in sepsis. Int J Mol Sci 20(14):3494
- Kazama F, Nakamura J, Osada M, Inoue O, Oosawa M, Tamura S et al (2015) Measurement of soluble C-type lectin-like receptor 2 in human plasma. Platelets 26(8):711–719
- Inoue O, Osada M, Nakamura J, Kazama F, Shirai T, Tsukiji N et al (2019) Soluble CLEC-2 is generated independently of ADAM10 and is increased in plasma in acute coronary syndrome: comparison with soluble GPVI. Int J Hematol 110(3):285–294
- Fei M, Xiang L, Chai X, Jin J, You T, Zhao Y et al (2020) Plasma soluble C-type lectin-like receptor-2 is associated with the risk of coronary artery disease. Front Med 14(1):81–90
- Zhang X, Zhang W, Wu X, Li H, Zhang C, Huang Z, et al (2018) Prognostic significance of plasma CLEC-2 (C-type lectin-like receptor 2) in patients with acute ischemic stroke. Stroke 7: STROKEAHA118022563
- Nishigaki A, Ichikawa Y, Ezaki M, Yamamoto A, Suzuki K, Tachibana K et al (2021) Soluble C-type lectin-like receptor 2 elevation in patients with acute cerebral infarction. J Clin Med 10(15):3408
- 9. Levi M, Ten Cate H (1999) Disseminated intravascular coagulation. N Engl J Med 341(8):586–592
- 10. Iba T, Levy JH (2020) Sepsis-induced coagulopathy and disseminated intravascular coagulation. Anesthesiology 132(5):1238–1245
- Saito S, Uchino S, Hayakawa M, Yamakawa K, Kudo D, lizuka Y et al (2019) Japan Septic Disseminated Intravascular Coagulation (JSEPTIC DIC) study group: epidemiology of disseminated intravascular coagulation in sepsis and validation of scoring systems. J Crit Care 50:23–30
- Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810
- Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C et al (2021) Executive summary: surviving sepsis campaign: international guidelines for the management of sepsis and septic shock 2021. Crit Care Med 49(11):1974–1982
- 14. Chan YH (2003) Biostatistics102: quantitative data parametric & nonparametric tests. Singapore Med J 44(8):391–396
- Chan YH (2003) Biostatistics 103: qualitative data –tests of independence. Singapore Med J 44(10):498–503
- Chan YH (2003) Biostatistics 104: correlational analysis. Singapore Med J 44(12):614–619

- Lakbar I, Einav S, Lalevée N, Martin-Loeches I, Pastene B, Leone M (2023) Interactions between gender and sepsis—implications for the future. Microorganisms 11(3):746
- Rabes A, Zimmermann S, Reppe K, Lang R, Seeberger PH, Suttorp N et al (2015) The C-type lectin receptor Mincle binds to Streptococcus pneumoniae but plays a limited role in the anti-pneumococcal innate immune response. PLoS ONE 10(2):e0117022
- Parikh F (2016) Infections and thrombocytopenia. J Assoc Physicians India 64(2):11–12
- 20. Wang Y, Ouyang Y, Liu B, Ma X, Ding R (2018) Platelet activation and antiplatelet therapy in sepsis: a narrative review. Thromb Res 166:28–36

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com