Skip to main content

The prognostic value of the dead-space fraction and other physiological parameters in the weaning process of mechanical ventilation in patients with obstructive air flow

Abstract

Background

Patients with obstructive air flow including chronic obstructive lung diseases and bronchial asthma use a substantial proportion of mechanical ventilation (MV) in the ICU, and their overall mortality with ventilator support can be significant. From the pathophysiological standpoint, they have increased airway resistance, pulmonary hyperinflation, and high pulmonary dead space, leading to an increased work of breathing. MV is an integral part of the treatment for acute respiratory failure.

Aim of the work

The present study aimed to demonstrate the prognostic value of ventilatory parameters including that of the dead-space fraction (DSF), end-tidal carbon dioxide (ETCO2), lung mechanics, and gas exchange during the application of MV.

Patients and methods

Forty consecutive patients admitted to the ICU with acute respiratory failure due to chronic obstructive lung diseases and acute severe asthma were enrolled in the study. Lung mechanics (compliance and airway resistance), DSF, ETCO2, and arterial blood gases were measured at the following times: on admission to the ICU, initially, and finally before extubation.

Results

Successfully weaned and survivors represent 60% (n = 24) of all patients included in this study. They had a lower MV duration at a mean of 3.75 days ±1.8 SD. Logistic regression analysis revealed a significant association between the MV duration, pH more than 7.32, and dynamic compliance on the one hand and extubation failure on the other, but no significant association was found between the DSF and extubation failure, with odds ratio equal to 2.08 (95% confidence interval: 0.05–85.78, P = 0.7).

Conclusion

We concluded that DSF is not an influential predictor of extubation failure in patients with obstructive air flow, whereas dynamic compliance plays a strong prognostic role in the weaning process.

References

  1. Pauwels RA, Buist AS, Ma P, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: National Heart, Lung, and Blood Institute and World Health Organization Global Initiative for Chronic Obstructive Lung Disease (GOLD): executive summary. Respir Care 2001; 46:798–825.

    PubMed  CAS  Google Scholar 

  2. Blanch L, Bernabé F, Lucangelo U. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir Care 2005; 50:110–123.

    PubMed  Google Scholar 

  3. Mishima M. Physiological differences and similarities in asthma and COPD — based on respiratory function testing. Allergol Int 2009; 58:333–340.

    Article  PubMed  Google Scholar 

  4. Purro A, Appendini L, Polillo C, Musso G, Taliano C, Mecca F, et al. Mechanical determinants of early acute ventilatory failure in COPD patients: a physiologic study. Intensive Care Med 2009; 35:639–647.

    Article  PubMed  Google Scholar 

  5. Vicente GE, Almengor SJC, Diaz CLA, Aballero JC, Salgado C. Invasive mechanical ventilation in COPD and asthma. Med Intensiva 2011; 35:288–298. Available at: http://www.elsevier.es/medintensiva.

    Article  Google Scholar 

  6. Brochard L, Martin GS, Blanch L, Pelosi P, Belda FJ, Jubran A, et al. Clinical review: Respiratory monitoring in the ICU –a consensus of 16. Crit Care 2012; 16:219. Available at: http://ccforum.com/content/16/.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reddy RM, Kalpalatha KK. Review of ventilatory techniques to optimize mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2007; 2:441–452.

    PubMed  PubMed Central  Google Scholar 

  8. Romero PV, Lucangelo U, Lopez Aguilar J, Fernandez R, Blanch L. Physiologically based indices of volumetric capnography in patients receiving mechanical ventilation. Eur Respir J 1997; 10:1309–1315.

    Article  CAS  PubMed  Google Scholar 

  9. Brenner B, Corbridge T, Kazzi A. Intubation and mechanical ventilation of the asthmatic patient in respiratory failure. Proc Am Thorac Soc 2009; 6:371–379. Available at: http://www.atsjournals.org.

    Article  PubMed  Google Scholar 

  10. de Chazal I, Hubmayr RD. Novel aspects of pulmonary mechanics in intensive care. Br J Anaesth 2003; 91:81–91.

    Article  PubMed  Google Scholar 

  11. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melote C, et al. Weaning from mechanical ventilation. Eur Respir J 2007; 29:1033–1056.

    Article  PubMed  Google Scholar 

  12. Krieger BP, Ershowsky PF, Becker DA, Gazeroglu HB. Evaluation of conventional criteria for predicting successful weaning from mechanical ventilatory support in elderly patients. Crit Care Med 1989; 17:858–861.

    Article  CAS  PubMed  Google Scholar 

  13. Meade M, Guyatt G, Griffith L, Booker L, Randall J, Cook DJ. Introduction to a series of systematic reviews of weaning from mechanical ventilation. Chest 2001; 120(Suppl):396S–399SS.

    Article  CAS  PubMed  Google Scholar 

  14. Vallverdú I, Calaf N, Subirana M, Net A, Benito S, Mancebo J. Clinical characteristics, respiratory functional parameters, and outcome of a two-hour T-piece trial in patients weaning from mechanical ventilation. Am J Respir Crit Care Med 1998; 158:1855–1862.

    Article  PubMed  Google Scholar 

  15. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002; 346:1281–1286.

    Article  PubMed  Google Scholar 

  16. Hardman JG, Aitkenhead AR. Estimating alveolar dead space from the arterial to end-tidal CO2 gradient: a modeling analysis. Anesth Analg 2003; 97:1846–1851.

    Article  PubMed  Google Scholar 

  17. Galia F, Brimioulle S, Bonnier F, Vandenbergen N, Dojat M, Vincent JL, Brochard LJ. Use of maximum end-tidal CO(2) values to improve end-tidal CO(2) monitoring accuracy. Respir Care 2011; 56:278–283.

    Article  PubMed  Google Scholar 

  18. Tobin M, Vav de Graaff WB. Monitoring of lung mechanics and work of breathing, principles and practice of mechanical ventilation. Edited by Tobin MJ. Principles and Practice of Mechanical Ventilation. New York: McGraw-Hill; 1994. p. 967–1003.

    Google Scholar 

  19. Leatherman J. Life-threatening asthma. Clin Chest Med 1994; 15:453–479.

    PubMed  CAS  Google Scholar 

  20. Finfer SR, Garrard CS. Ventilatory support in asthma. Br J Hosp Med 1993; 49:357–360.

    PubMed  CAS  Google Scholar 

  21. Confalonieri M, Garuti G, Cattaruzza MS, Osborn JF, Antonelli M, Conti G, et al. Italian noninvasive positive pressure ventilation (NPPV) study group A chart of failure risk for noninvasive ventilation in patients with COPD exacerbation. Eur Respir J 2005; 25:348–355.

    Article  CAS  PubMed  Google Scholar 

  22. Farah R, Makhoul N. Can dead space fraction predict the length of mechanical ventilation in exacerbated COPD patients? Int J Chron Obstruct Pulmon Dis 2009; 4:437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Williams TJ, Tuxen DV, Scheinkestel CD, Czarny D, Bowes G. Risk factors for morbidity in mechanically ventilated patients with acute severe asthma. Am Rev Respir Dis 1992; 146:607–615.

    Article  CAS  PubMed  Google Scholar 

  24. Appendini L, Gudjonsdottir M, Rossi A, Donner CF. Therapeutic strategies in weaning failure. Monaldi Arch Chest Dis 1998; 53:372–376.

    PubMed  CAS  Google Scholar 

  25. Purro A, Appendini L, De Gaetano A, Gudjonsdottir M, Donner CF, Rossi A. Physiologic determinants of ventilator dependence in long-term mechanically ventilated patients. Am J Respir Crit Care Med 2000; 161(Pt 1):1115–1123.

    Article  CAS  PubMed  Google Scholar 

  26. Rumbak MJ, Walsh FW, Anderson WM, Rolfe MW, Solomon DA. Significant tracheal obstruction causing failure to wean in patients requiring prolonged mechanical ventilation: a forgotten complication of long-term mechanical ventilation. Chest 1999; 115:1092–1095.

    Article  CAS  PubMed  Google Scholar 

  27. El Solh AA, Bhat A, Gunen H, Berbary E. Extubation failure in the elderly. Respir Med 2004; 98:661–668.

    Article  PubMed  Google Scholar 

  28. Nevins ML, Epstein SK. Predictors of outcome for patients with COPD requiring invasive mechanical ventilation. Chest 2001; 119:1840–1849.

    Article  CAS  PubMed  Google Scholar 

  29. Vitacca M, Clini E, Porta R, Foglio K, Ambrosino N. Acute exacerbations in patients with COPD: predictors of need for mechanical ventilation. Eur Respir J 1996; 9:1487–1493.

    Article  CAS  PubMed  Google Scholar 

  30. Ely EW, Baker AM, Dunagan DP, Burke HL, Smith AC, Kelly PT, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med 1996; 335:1864–1869.

    Article  CAS  PubMed  Google Scholar 

  31. Jabour ER, Rabil DM, Truwit JD, Rochester DF. Evaluation of a new weaning index based on ventilatory endurance and the efficiency of gas exchange. Am Rev Respir Dis 1991; 144(Pt 1):531–537.

    Article  CAS  PubMed  Google Scholar 

  32. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med 1991; 324:1445–1450.

    Article  CAS  PubMed  Google Scholar 

  33. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149:818–824.

    Article  CAS  PubMed  Google Scholar 

  34. Britos M, Smoot E, Liu KD, Thompson BT, Checkley W, Brower RG. The value of positive end-expiratory pressure and FiO2 criteria in the definition of the acute respiratory distress syndrome. Crit Care Med 2011; 39: 2025–2030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Willson DF, Thomas NJ, Markovitz BP, Bauman LA, DiCarlo JV, Pon S, et al. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA 2005; 293:470–476.

    Article  CAS  PubMed  Google Scholar 

  36. Tobin MJ. Ventilator monitoring, and sharing the data with patients. Am J Respir Crit Care Med 2001; 163:810–811.

    Article  CAS  PubMed  Google Scholar 

  37. Bousso A, Ejzenberg B, Ventura AM, Fernandes JC, Fernandes IC, Góes PF, Costa Vaz FA. Evaluation of the deadspace to tidal volume ratio as a predictor of extubation failure. J Pediatr 2006; 82:347–353.

    Article  Google Scholar 

  38. Kline JA, Kubin AK, Patel MM, Easton EJ, Seupal RA. Alveolar deadspace as a predictor of severity of pulmonary embolism. Acad Emerg Med 2000; 7:611–617.

    Article  CAS  PubMed  Google Scholar 

  39. González-Castro A, Suárez-Lopez V, Gómez-Marcos V, González-Fernandez C, Iglesias-Posadilla D, Burón-Mediavilla J, et al. Utility of the deadspace fraction (Vd/Vt) as a predictor of extubation success. Med Intensiva 2011; 35:529–538.

    Article  PubMed  Google Scholar 

  40. Adel MS, Gehan ME, Hesham AA, Shaymaa AA. Evaluation of the cardiopulmonary status using a noninvasive respiratory profile monitor in chronic obstructive lung disease patients during low-ventilation strategy. Egyptian J Bronchology 2014; 8:44–50.

    Article  Google Scholar 

  41. Belpomme V, Ricard-Hibon A, Devoir C, Dileseigres S, Devaud ML, Chollet C, et al. Correlation of arterial PaCO2 and ETCO2 in prehospital controlled ventilation. Am J Emerg Med 2005; 23:852–859.

    Article  PubMed  Google Scholar 

  42. Kobayashi Y, Seki S, Ichimiya T, Iwasaki H, Namiki A. Cuffed oropharyngeal airway and capnometry: comparison of end-tidal and arterial carbon dioxide pressures. J Anesth 1999; 13:136–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala A. Mohammad.

Additional information

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agmy, G.R., Mohammad, H.A. & Hassanin, A.A.M. The prognostic value of the dead-space fraction and other physiological parameters in the weaning process of mechanical ventilation in patients with obstructive air flow. Egypt J Bronchol 9, 245–252 (2015). https://doi.org/10.4103/1687-8426.165902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/1687-8426.165902

Keywords

  • bronchial asthma
  • chronic obstructive lung diseases
  • dead-space fraction
  • lung mechanics
  • mechanical ventilation