Murias G, Lucangelo U, Blanch L. Patient-ventilator asynchrony. Curr Opin Crit Care 2016; 22:53–59.
Article
Google Scholar
Murias G, Villagra A, Blanch L. Patient-ventilator dyssynchrony during assisted invasive mechanical ventilation. Minerva Anestesiol 2013; 79:434–444.
CAS
PubMed
Google Scholar
Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 2006; 32:1515–1522.
Article
Google Scholar
Mellott KG, Grap MJ, Munro CL, Sessler CN, Wetzel PA, Nilsestuen JO, et al. Patient ventilator asynchrony in critically ill adults: frequency and types. Heart Lung 2014; 43:231–243.
Article
Google Scholar
Goulet R, Hess D, Kacmarek RM. Pressure vs flow triggering during pressure support ventilation. Chest 1997; 111:1649–1653.
Article
CAS
Google Scholar
Blanch L, Sales B, Fernandez R, Garcia-Esquirol O, Estruga A, Chacon E, et al. Clinical application of a computerized alarm system for mechanically ventilated patients. A pilot study. Intensive Care Med 2010; 36:S111.
Garcia-Esquirol O, Sales B, Montanya J, Chacon E, Estruga A, Borelli M, et al. Validation of an automatic continuous system to detect expiratory asynchronies during mechanical ventilation. Intensive Care Med 2010; 36: S349.
Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Lujan M, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 2015; 41:633–641.
Article
Google Scholar
Estruga A, Chacon E, Sales B, Montanya J, Jam R, Garcia-Esquirol O, et al. Nursing detection of expiratory patient-ventilator asynchronies during mechanical ventilation. Intensive Care Med 2010; 36:S342.
Aslanian P, El Atrous S, Isabey D, Valente E, Corsi D, Harf A, et al. Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med 1998; 157:135–143.
Article
CAS
Google Scholar
Branson RD, Campbell RS, Davis K, Johnson DJ. Comparison of pressure and flow triggering systems during continuous positive airway pressure. Chest 1994; 106:540–544.
Article
CAS
Google Scholar
Polese G, Massara A, Poggi R, Brandolese R, Brandi G, Rossi A. Flow-triggering reduces inspiratory effort during weaning from mechanical ventilation. Intensive Care Med 1995; 21:682–686.
Article
CAS
Google Scholar
Sassoon CS, Gruer SE. Characteristics of the ventilator pressure- and flow-trigger variables. Intensive Care Med 1995; 21:159–168.
Article
CAS
Google Scholar
Tütüncü AS, Cakar N, Camci E, Esen F, Telci L, Akpir K. Comparison of pressure- and flow-triggered pressure-support ventilation on weaning parameters in patients recovering from acute respiratory failure. Crit Care Med 1997; 25:756–760.
Article
Google Scholar
Sharshar T, Desmarais G, Louis B, Macadou G, Porcher R, Harf A, et al. Transdiaphragmatic pressure control of airway pressure support in healthy subjects. Am J Respir Crit Care Med 2003; 168:760–769.
Article
Google Scholar
Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 2016; 42:1360–1373.
Article
Google Scholar
Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 2014; 189:520–531.
Article
Google Scholar
Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F. Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J 1997; 10:177–183.
Article
CAS
Google Scholar
Wu XY, Huang YZ, Yang Y, Liu SQ, Liu HG, Qiu HB. Effects of neurally adjusted ventilatory assist on patient-ventilator synchrony in patients with acute respiratory distress syndrome. Zhonghua Jie He He Hu Xi Za Zhi 2009; 32:508–512.
PubMed
Google Scholar
Barrera R, Melendez J, Ahdoot M, Huang Y, Leung D, Groeger JS. Flow triggering added to pressure support ventilation improves comfort and reduces work of breathing in mechanically ventilated patients. J Crit Care 1999; 14:172–176.
Article
CAS
Google Scholar
Khalil MM, ElFattah N, El-Shafey M, Riad MN, Aid AR, Anany MA. Flow versus pressure triggering in mechanically ventilated acute respiratory failure patients. Egypt J Bronchol 2015 9;192–210.
Giuliani R, Mascia L, Recchia F, Caracciolo A, Fiore T, Ranieri VM. Patient-ventilator interaction during synchronized intermittent mandatory ventilation. Effects of flow triggering. Am J Respir Crit Care Med 1995; 151:1–9.
Article
CAS
Google Scholar
Saito S, Tokioka H, Kosaka F. Efficacy of flow-by during continuous positive airway pressure ventilation. Crit Care Med 1990; 18:654–656.
Article
CAS
Google Scholar
Al-Najjar MMH, Fahmy TS, Al-Shafee MA, Al-Atroush HH, Mokhtar S. The effect of triggering type on post triggering pressure variations during pressure support ventilation; a simplified surrogate for dys-synchrony. Intensive Care Med 2013; 39:S251.
Google Scholar
Ranieri VM, Mascia L, Petruzzelli V, Bruno F, Brienza A, Giuliani R. Inspiratory effort and measurement of dynamic intrinsic PEEP in COPD patients: effects of ventilator triggering systems. Intensive Care Med 1995; 21:896–903.
Article
CAS
Google Scholar
Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Crit Care 2016; 20:276