Skip to main content

Role of telomerase expression in interstitial lung diseases

Abstract

Background

Telomeres are hexameric nucleotide sequences. The biological role of telomeres is to prevent shortening of DNA to preserve integrity of the genome. Length of telomeres is determined by age, sex, and environmental exposures. Telomeres are vulnerable to injury by oxidative stress. Telomere length is sustained by telomerase, a ribonucleoprotein telomerase reverse transcriptase (TERT). Telomerase may help cell growth and secure against cell death. ‘Telomeropathy’ is associated with genetic mutations. The most common phenotype related to telomerase mutation is pulmonary fibrosis.

Objective

To investigate the associations of both TERT and telomerase RNA component C with disease progression in patients with interstitial lung diseases (ILDs), which include idiopathic pulmonary fibrosis (IPF), and to compare results between patients with ILD and control.

Patients and methods

A total of 46 patients with different types of ILDs were enrolled as well as 15 healthy persons as control. Whole blood sample was obtained from both patients and healthy control for detection of expression of telomerase gene by quantitative real-time PCR.

Results

There was a significant negative correlation between telomerase reverse transcriptase (h-TERT) and partial pressure of oxygen (r=−23, P=0.03). Both h-TERT and telomerase reverse transcriptaseRNA component (h-TERC) were relatively more expressed in patients with IPF with pulmonary hypertension, whereas there was a significant elevation of h-TERT relative expression in patients with IPF with honeycombing high-resolution computed tomography pattern in comparison with those with reticulonodular pattern, with median of 0.85 versus 0.29, respectively.

Conclusion

Hypoxia may affect DNA damage in the telomere region. Expression of telomerase may take part in pulmonary fibrosis. Exposure to hypoxia or growth factors can stimulate the expression of telomerase on cells of vascular smooth muscle.

References

  1. Stewart SA, Weinberg RA. Telomeres. cancer to human aging. Annu Rev Cell Dev Biol 2006; 22:531–557.

    Article  CAS  Google Scholar 

  2. Hewitt G, Jurk D, Marques FD, Correia Melo C, Hardy T, Gackowska A, et al. Telomeres are favoured targets of a president DNA damage in ageing and stress induced senescence. Nat Commun 2012; 3:708.

    Google Scholar 

  3. Shay JW, Wright WE. Senescence and immortalization:role of telomeres and telomerase. Carcinogenesis 2005; 26:867–887.

    Article  CAS  Google Scholar 

  4. Newton CA, Batra K, Torrealba J, Kozlitina J, Glazer CS, Aravena C, et al. Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive. Eur Respir J 2016; 48:1710–1720.

    Article  CAS  Google Scholar 

  5. Von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci 2002; 27:339–344.

    Article  Google Scholar 

  6. Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet 2012; 13:693–704.

    Article  CAS  Google Scholar 

  7. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345:458–460.

    Article  CAS  Google Scholar 

  8. Xu L, Li S, Stohr BA. The role of telomere biology in cancer. Annu Rev Pathol 2013; 8:49–78.

    Article  CAS  Google Scholar 

  9. Ding D, Zhou J, Wang M, Cong YS. Implications of telomere-independent activities of telomerase reverse transcriptase in human cancer. FEBS J 2013; 280:3205–3211.

    Article  CAS  Google Scholar 

  10. Du Bois RM, Kangesan I, Veeraraghavan S. Genetics of pulmonary fibrosis. Semin Respir Crit Care Med 2003; 24:205–212.

    Article  Google Scholar 

  11. Zoz DF, Lawson WE, Blackwell TS. Idiopathic pulmonary fibrosis:a disorder of epithelial cell dysfunction. Am J Med Sci 2011; 341:435–438.

    Article  Google Scholar 

  12. Snetselaar R, van Moorsel CHM, Kazemier KM, van der Vis JJ, Zanen P, van Oosterhout MFM, Grutters JC. Telomere length in interstitial lung diseases. Chest 2015; 148:1011–1018.

    Article  Google Scholar 

  13. Waisberg DR, Parra ER, Barbas-Filho JV, Fernezlian S, Capelozzi VL. Increased fibroblast telomerase expression precedes myofibroblast alpha-smooth muscle actin expression in idiopathic pulmonary fibrosis. Clinics (Sao Paulo) 2012; 67:1039–1046.

    Article  Google Scholar 

  14. Armanios M. Telomerase and idiopathic pulmonary fibrosis. Mutat Res 2012; 730:52–58.

    Article  CAS  Google Scholar 

  15. Ley B, Newton CA, Arnould I, Elicker BM, Henry TS, Vittinghoff E, et al. The MUC5B promoter polymorphism and telomere length in patients with chronic hypersensitivity pneumonitis:an observational cohort-control study. Lancet Respir Med 2017; 5:639–647.

    Article  CAS  Google Scholar 

  16. Kong CM, Lee XW, Wang X. Telomere shortening in human diseases. FEBS J 2013; 280:3180–3193.

    Article  CAS  Google Scholar 

  17. Nozaki Y, Liu T, Hatano K, Gharaee-Kermani M, Phan SH. Induction of telomerase activity in fibroblasts from bleomycin-injured lungs. Am J Respir Cell Mol Biol 2000; 23:460–465.

    Article  CAS  Google Scholar 

  18. Kim JK, Lim Y, Kim KA, Seo MS, Kim JD, Lee KH, Park CY. Activation of telomerase by silica in rat lung. Toxicol Lett 2000; 111:263–270.

    Article  CAS  Google Scholar 

  19. Savale L, Chaouat A, Bastuji-Garin S, Marcos E, Boyer L, Maitre B, et al. Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2009; 179:566–571.

    Article  CAS  Google Scholar 

  20. Shoeb M, Kodali VK, Farris BY, Bishop LM, Meighan TG, Salmen R, et al. Oxidative stress, DNA methylation, and telomere length changes in peripheral blood mononuclear cells after pulmonary exposure to metal-rich welding nanoparticles. NanoImpact 2017; 5:61–69.

    PubMed  Google Scholar 

  21. Rizvi S, Raza ST, Mahdi F. Telomere length variations in aging and age-related diseases. Curr Aging Sci 2014; 7:161–167.

    Article  CAS  Google Scholar 

  22. Shiels PG, McGlynn LM, MacIntyre A, Johnson PCD, Batty GD, Burns H, et al. Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PLoS One 2011; 6: e22521.

  23. Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, et al. Gender and telomere length:systematic review and meta-analysis. Exp Gerontol 2014; 51:15–27.

    Article  CAS  Google Scholar 

  24. Misiti S, Nanni S, Fontemaggi G, Cong YS, Wen J, Hirte HW, et al. Induction of hTERT expression and telomerase activity by estrogens in human ovary epithelium cells. Mol Cell Biol 2000; 20:3764–3771.

    Article  CAS  Google Scholar 

  25. Van der Vaart H, Postma DS, Timens W, ten Hacken NH. Acute effects of cigarette smoke on inflammation and oxidative stress:a review. Thorax 2004; 59:713–721.

  26. Morla M, Buequets X, Pons J, Sauleda J, MacNee W, Agusti AG. Telomere shortening in smokers with and without COPD. Eur Respir J 2006; 27:525–528.

    Article  CAS  Google Scholar 

  27. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, et al. Obesity, cigarette smoking, and telomere length in women. Lancet 2005; 366:662–664.

    Article  CAS  Google Scholar 

  28. Chan SW, Blackburn EH. New ways not to make ends meet:telomerase, DNA damage proteins and heterochromatin. Oncogene 2002; 21:553–563.

    CAS  PubMed  Google Scholar 

  29. Schulz H, Albrecht E, Behr J, Huber RM, Nowak D, Klopp N, et al. Are spirometric lung function indices associated with telomere length of circulating leukocytes? Pneumologie 2012; 66:A811.

  30. Dai J, Cai H, Zhugang Y, Wu Y, Min H, Li J, et al. Telomerase gene mutations and telomere length shortening in patients with idiopathic pulmonary fibrosis in a Chinese population. Respirology 2015; 20:122–128.

    Article  Google Scholar 

  31. Fragkiadaki P, Tsoukalas D, Fragkiadoulaki I, Psycharakis C, Nikitovic D, Spandidos DA, Tsatsakis AM. Telomerase activity in pregnancy complications (Review). Mol Med Rep 2016; 14:16–21.

    Article  CAS  Google Scholar 

  32. Coussens M, Davy P, Brown L, Foster C, Andrews WH, Nagata M, Allsopp R. RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1 alpha as critical for telomerase function in murine embryonic stem cells. Proc Natl Acad Sci USA 2010; 107:13842–13847.

    Article  CAS  Google Scholar 

  33. Yang K, Zheng D, Deng X, Bai L, Xu Y, Cong YS. Lysophosphatidic acid activates telomerase in ovarian cancer cells through hypoxia-inducible factor-1 alpha and the PI3K pathway. J Cell Biochem 2008; 105:1194–1201.

    Article  CAS  Google Scholar 

  34. Kim KS, Kwak JW, Lim SJ, Park YK, Yang HS, Kim HJ. Oxidative stress-induced telomere length shortening of circulating leukocyte in patients with obstructive sleep apnea. Aging Dis 2016; 7:604–613.

    Article  Google Scholar 

  35. Sadek SH, Kasem SM. Factors predicting pulmonary hypertension in idiopathic pulmonary fibrosis patients. Egypt J Bronchol 2015; 9:55–58.

    Article  Google Scholar 

  36. Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, et al. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54 (Suppl):S20–S31.

    Article  CAS  Google Scholar 

  37. Minamino T, Kourembanas S. Mechanisms of telomerase induction duringvascular smooth muscle cell proliferation. Circ Res 2001; 89:237–243.

    Article  CAS  Google Scholar 

  38. Marsboom G, Archer SL. Pathways of proliferation:new targets to inhibit the growth of vascular smooth muscle cells. Circ Res 2008; 103:1047–1049.

    Article  CAS  Google Scholar 

  39. Mouraret N, Houssaïni A, Abid S, Quarck R, Marcos E, Parpaleix A, et al. Role for telomerase in pulmonary hypertension. Circulation 2015; 131:742–755.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radwa A. Elhefny MD.

Additional information

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaban, M.M., Elhefny, R.A., Hussein, S.H. et al. Role of telomerase expression in interstitial lung diseases. Egypt J Bronchol 13, 349–357 (2019). https://doi.org/10.4103/ejb.ejb_71_18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/ejb.ejb_71_18

Keywords