Skip to main content
  • Review article
  • Open access
  • Published:

Biological therapy in severe asthma: A gem or a jam

Abstract

Severe asthma remain a great challenge for physicians. Several therapies are suggested. The only one proved to be effective in severe allergic asthma is Omalizumab. Other biological agents are in different phases in research, yet, only few of them proved some effectiveness in clinical trial. Recently Mepolizumab (a monoclonal antibody against interleukin-IL-5)was approved by the food and drug administration in United States of America (FDA) as an effective drug in severe esinophilic asthma. Other agents include anti IL 13, anti IL 4, and anti IL 17. In this editorial some of the biological therapies are reviewed.

References

  1. Jarjour NN, Erzurum SC, Bleecker ER, Calhoun WJ, Castro M, Comhair SA, et al., NHLBI Severe Asthma Research Program (SARP) Severe asthma: lessons learned from the National Heart, Lung, and Blood Institute Severe Asthma Research Program. Am J Respir Crit Care Med 2012; 185:356–362.

    PubMed  PubMed Central  Google Scholar 

  2. Frauman AG. An overview of the adverse reactions to adrenal corticosteroids. Adverse Drug React Toxicol Rev 1996; 15:203–206.

    PubMed  CAS  Google Scholar 

  3. Migrom H, Fick RB, Su JQ, Reimann JD, Bush RK, Watrous ML, et al. Treatment of allergic asthma with monoclonal anti-IgE antibody. N Engl J Med 1999; 341:1966–1977.

    Google Scholar 

  4. Humbert M, Beasley R, Ayres J, Slavin R, Hébert J, Bousquet J, et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 2005; 60:309–316.

    PubMed  CAS  Google Scholar 

  5. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention. NIH Publication 2005: 111–120. Available at: http://www.ginasthma.com

    Google Scholar 

  6. Rosenberg HF, Phipps S, Foster PS. Eosinophil trafficking in allergy and asthma. J Allergy Clin Immunol 2007; 119:1303–1310quiz 1311–1312.

    CAS  Google Scholar 

  7. Kips JC, Tournoy KG, Pauwels RA. New anti-asthma therapies: suppression of the effect of interleukin (IL)-4 and IL-5. Eur Respir J 2001; 17:499–506.

    PubMed  CAS  Google Scholar 

  8. Kips JC, O’Connor BJ, Langley SJ, Woodcock A, Kerstjens HAM, Postma DS, et al. Results of a phase I trial with SCH55700, a humanized anti-IL-5 antibody, in severe persistent asthma. Am J Respir Crit Care Med 2000; 161:A505.

    Google Scholar 

  9. Kips JC, O’Connor BJ, Langley SJ, Woodcock A, Kerstjens HA, Postma DS, et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am J Respir Crit Care Med 2003; 167:1655–1659.

    PubMed  Google Scholar 

  10. Flood-Page P, Swenson C, Faiferman I, Matthews J, Williams M, Brannick L, et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med 2007; 176:1062–1071.

    PubMed  CAS  Google Scholar 

  11. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 2012; 380:651–659.

    PubMed  CAS  Google Scholar 

  12. Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med 2014; 371:1198–1207.

    PubMed  Google Scholar 

  13. Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med 2011; 184: 1125–1132.

    PubMed  CAS  Google Scholar 

  14. Castro M, Wenzel SE, Bleecker ER, Pizzichini E, Kuna P, Busse WW, et al. Benralizumab, an anti-interleukin 5 receptor α monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir Med 2014; 2:879–890.

    PubMed  CAS  Google Scholar 

  15. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999; 103:779–788.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J 2013; 41:330–338.

    PubMed  CAS  Google Scholar 

  17. Brightling CE, Chanez P, Leigh R, O’Byrne PM, Korn S, She D, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med 2015; 3:692–701.

    PubMed  CAS  Google Scholar 

  18. Hua F, Ribbing J, Reinisch W, Cataldi F, Martin S. A pharmacokinetic comparison of anrukinzumab, an anti- IL-13 monoclonal antibody, among healthy volunteers, asthma and ulcerative colitis patients. Br J Clin Pharmacol 2015; 80:101–109.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Corren J, Robert F, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med 2011; 365:1088–1098.

    PubMed  CAS  Google Scholar 

  20. Hanania NA, Noonan M, Corren J, Korenblat P, Zheng Y, Fischer SK, et al. Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies. Thorax 2015; 70:748–756.

    PubMed  PubMed Central  Google Scholar 

  21. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 2013; 368: 2455–2466.

    PubMed  CAS  Google Scholar 

  22. Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med 2010; 181:788–796.

    PubMed  CAS  Google Scholar 

  23. Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 2007; 370:1422–1431.

    PubMed  CAS  Google Scholar 

  24. Borish LC, Nelson HS, Lanz MJ, Claussen L, Whitmore JB, Agosti JM, Garrison L Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 1999; 160:1816–1823.

    PubMed  CAS  Google Scholar 

  25. Park CS, Lee SM, Chung SW, Uh S, Kim HT, Kim YH. Interleukin-2 and soluble interleukin-2 receptor in bronchoalveolar lavage fluid from patients with bronchial asthma. Chest 1994; 106:400–406.

    PubMed  CAS  Google Scholar 

  26. Busse WW, Israel E, Nelson HS, Baker JW, Charous BL, Young DY, et al. Daclizumab improves asthma control in patients with moderate to severe persistent asthma: a randomized, controlled trial. Am J Respir Crit Care Med 2008; 178:1002–1008.

    PubMed  CAS  Google Scholar 

  27. Kudo M, Melton AC, Chen C, Engler MB, Huang KE, Ren X, et al. IL-17A produced by ab T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat Med 2012; 18:547–554.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin SL Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 2013; 188:1294–1302.

    PubMed  CAS  Google Scholar 

  29. Obase Y, Shimoda T, Mitsuta K, Matsuo N, Matsuse H, Kohno S. Correlation between airway hyperresponsiveness and airway inflammation in a young adult population: eosinophil, ECP, and cytokine levels in induced sputum. Ann Allergy Asthma Immunol 2001; 86:304–310.

    PubMed  CAS  Google Scholar 

  30. Erin EM, Leaker BR, Nicholson GC, Tan AJ, Green LM, Neighbour H, et al. The effects of a monoclonal antibody directed against tumor necrosis factor-alpha in asthma. Am J Respir Crit Care Med 2006; 174:753–762.

    PubMed  CAS  Google Scholar 

  31. Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax 2005; 60: 1012–1018.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006; 354:697–708.

    PubMed  CAS  Google Scholar 

  33. Catal F, Mete E, Tayman C, Topal E, Albayrak A, Sert H. A human monoclonal anti-TNF alpha antibody (adalimumab) reduces airway inflammation and ameliorates lung histology in a murine model of acute asthma. Allergol Immunopathol (Madr) 2015; 43:14–18.

    CAS  Google Scholar 

  34. Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlén SE, et al., T03 Asthma Investigators A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med 2009; 179:549–558.

    PubMed  CAS  Google Scholar 

  35. Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O’Byrne PM, et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy 2012; 42:1097–1103.

    PubMed  CAS  Google Scholar 

  36. Chapman RW, Minnicozzi M, Celly CS, Phillips JE, Kung TT, Hipkin RW, et al. A novel, orally active CXCR1/2 receptor antagonist, Sch527123, inhibits neutrophil recruitment, mucus production, and goblet cell hyperplasia in animal models of pulmonary inflammation. J Pharmacol Exp Ther 2007; 322:486–493.

    PubMed  CAS  Google Scholar 

  37. Traves S, Smith SJ, Barnes PJ, Donnelly LE. Specific CXC but not CC chemokines cause elevated monocyte migration in COPD: a role for CXCR2. J Leukoc Biol 2004; 76:441–450.

    PubMed  CAS  Google Scholar 

  38. Gaga M, Nair PK, Hargreave F, Sadeh J, Chanez p. Sch527123, a novel treatment option for severe neutrophilic asthma. Am J Respir Crit Care Med 2010; 181:A6763.

    Google Scholar 

  39. Planagumà A, Domènech T, Pont M, Calama E, García-González V, López R, et al. Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation. Pulm Pharmacol Ther 2015; 34:37–45.

    PubMed  Google Scholar 

  40. Adcock IM, Caramori G, Chung KF. New targets for drug development in asthma. Lancet 2008; 372:1073–1087.

    PubMed  CAS  Google Scholar 

  41. Durham AL, Caramori G, Chung KF, Adcock IM. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl Res 2016; 167:192–203.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham Raafat.

Additional information

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raafat, H. Biological therapy in severe asthma: A gem or a jam. Egypt J Bronchol 10, 1–4 (2016). https://doi.org/10.4103/1687-8426.176658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/1687-8426.176658

Keywords